
IIC

ILECTE

RELATIVE UTILITY OF SELECTED

SOFTWARE REQUIREMENT METRICS

THESIS

James H. Byers, Captain, USAF

AFIT/GSS/LSY/ 91D- 4

92-04825
~DEPARTMENT OF THE AIR FOR!CEi H

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

92 2 2 4.

AFIT/GSS/LSY/9 ID- 4

RELATIVE UTILITY OF SELECTED

SOFTWARE REQUIREMENT METRICS

TESIS

James H. Byers, Captain, USAF

AFIT/GSS/LSY/91D- 4

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the authors
and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

/

Aoession For

-is S GA&

AvMAllbilltY COdes

Dist SPecil

AFIT/GSS/LSY/91D-4

RELATIVE UTILITY OF SELECTED SOFTWARE

REQUIREMENT METRICS

THESIS

Presented to the Faculty of the School of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Software Systems Management

James H. Byers, B.S.

Captain, USAF

December 1991

Approved for public release; distribution unlimited

The objective of this study was to determine the

relative utility of selected software requirement metrics in

assessing the productivity of the software requirements

analysis process and the quality of the products of this

process. A broader goal was to provide some of the

information needed to make intelligent choices of requirement

metrics on which to focus further research efforts and, more

importantly, to use on future software developments. This

objective was met by collecting information about the

perceptions that practicing software professionals have of

the usefulness of selected requirement metrics.

Many people have played a role in conducting this study.

My thanks extend to the various people who took the time to

respond to my rather lengthy questionnaire. Thanks also go

to my thesis advisor, Mr Dan Ferens, for providing the

guidance and freedom that allowed me to complete this study.

Finally, I am especially grateful to my wonderful wife Laultn

for helping me keep this research effort in the rroper

perspective.

JLnes H. Byers

Table of Contenta

Page

Preface... ii

List of Figures... V

List of Tables.. vi

Abstract.. vii

I. Introduction ... 1

General Issue ...I
Specific Problem3
Research objectives4
Research Scope5
Basic Methodology6
Investigative Questions7
Background ...8

II. Literature Review 1

Process Metrics10
Product Metrics14

Measures of Requirement Ambiguity............... 15
Measures of Specification Completeness..........23
Measures of Requirement Verifiability
(Testability)................................... 28
Measures of Specification Consistency29
Measures of Specification Modifiability30
Measures of Requirement Traceability........... 31
Measures of Specification Usability During
Operation and Maintenance...................... 31
Checklist and Worksheet Measures of
Specification Quality.......................... 32

Conclusion ...34

Table of Contents (cont'd)

Page

III. Methodology .. 36

Research Methodology 36
Justification of Approach 39
Survey Instrument 39
Data Collection 45
Data Analysis 46
Conclusion .. 49

IV. Findings .. 50

Demographic Information 50
Investigative Questions I - 3 52
Investigative Question 4 52
Investigative Question 5 59
Investigative Question 6 61
Investigative Question 7 61
Conclusion .. 62

V. Conclusions and Recommendations 63

Project Overview 63
Conclusions... 64
Closing Discussion 65
Recommendations 69

Appendix A: Software Requirements Analysis Metrics
Questionnaire 71

Appendix B: Interview Discussion Topics 100

Appendix C: Questionnaire Response Data 101

Bibliography .. 108

Vita ... 111

iv

List of Fi~ures

Figure Page

1. Comprehension and Misinterpretation Measurement
Scales . .. 17

2. Composite Specification Model 27

3. Example Of Scale Used on Questionnaire 42

4. Overall Scores (Perceived Metric Utility) 56

5. Questionnaire Statement #6 Mean Scores (Overt
Opinion of Metric Utility) 57

6. Questionnaire Statements #1-5 Mean Scores vs
Statement #6 Mean Scores 58

v

List of Tables

Table Page

1. Candidate Requirement Metrics 35

2. Requirement Metrics Included on Questionnaire 43

3. Respondent Demographic Information 50

4. Relative Ranking of Metrics Included on the
Questionnaire 54

5. Least Useful Requirement Metrics 60

vi

AFIT/GSS/LSY/91D-4

The objective of this study was to determine the

relative utility of selected software requirement metrics in

assessing the productivity of the software requirements

analysis process and the quality of the products of this

process. This objective was met by collecting information

about the perceptions that practicing software professionals

have of the usefulness of various requirement metrics.

The study employed a two part methodology. The first

part utilized Basili's goal/question/metric paradigm to

identify specific goals of the measurement effort and to

identify requirement metrics worthy of further investigation.

The second part employed a typical research design to gather

perceptions that software professionals have of the utility

of several metrics selected from those identified earlier.

The study produced inconclusive results and further

research is recommended. Results were based on a small

sample and the data only reiterated the mixed opinions that

software professionals have of the usefulness of software

metrics. One significant finding is the consensus that a

metric must be precisely defined for it to be accepted by the

sottware community.

vii

RELATIVE UTILITY OF SELECTED SOFTWARE

REQUIREMENT METRICS

I. Introduction

General Issue

Managing software development has become increasingly

difficult as the software programs under development have

become more complex and the number of tasks that software

programs perform has grown. Because software development has

grown more complicated, the costs and length of development

efforts have rapidly increased and continue to rise. As

developments have grown more complex and costly, an axiom has

emerged from the software development field: The proper use

of software metrics is essential to the successful management

of software development efforts (Mills, 1988:15).

Furthermore, the use of software metrics shows great promise

in enhancing the quality of software products. As software

quality has become an increasingly important issue, measuring

I.

the quality of software processes and products has also

increased in importance.

Software metrics are used to quantitatively measure the

essential features of software so that comparison of the

features can be made against some standard; isually a

requirement, goal, or expectation. Software metrics are

classified as either process or product metrics and are

applied to either the development process or the software

product developed. Process metrics quantify attributes of

the development process and environment, whereas product

metrics measure characteristics of the software: product.

Several recent reports have highlighted the usefulness

of software metrics as tools used in software developments.

The 1989 National Research Council Air Force Studies Board

Committee on Adapting Software Development Polic'.es to Modern

Technology recommended the Air Force mandate the use of

software engineering environments of which the application of

software metrics is a vital part. The committee also

specifically recommended the Air Force use software metrics

as quality indicators and to enhance evaluation of software

characteristics. A 1987 Defense Science Board report on

military software included recommendations that the

Department of Defense develop software metrics to measure

software quality, completeness, and implementation progress.

Lastly, a 1984 Air Force Studies Board also recommended the

2

Air Force develop tools, including software metrics, to aid

in software developments. (National Research Council,

1989:28, 38, 47-50, 63-66)

S~ecif ic Problem

Software metrics have been developed for and are used

during virtually every phase of the software life cycle. The

first metrics were developed to measure source code program

length and complexity. Efforts were then made to correlate

these measurements with development and maintenance costs and

efforts. More recently, metrics which quantify the

qualitative attributes of software designs have gained

prominence. However, relatively few metrics have been

developed for use during the requirements analysis phase of

the software life cycle. This is truly unfortunate, since

requirement metrics can be particularly useful.

Requirement metrics serve many purposes. Requirement

metrics can be used for project cost estimation and manpower

allocation. They can be used to assess and reduce the

complexity of the requirement specification by identifying

inconsistent or poorly structured requirements. Requirement

metrics can be more useful than other metrics; they can be

used to reduce the complexity of the design process, and to

make intelligent tradeoffs between manpower allocations among

3

projects, project deadlines, and software performance

targets. They can help in choosing between alternative

strategies for later phases of the development life cycle;

for instance, to guide design and testing. They can also

help in deciding if and how to use complexity reduction

techniques. In summary, requirement metrics can be useful

because they are applied in the earliest stage of development

and can help guide analysts and developers to better results

during system development. (Ramamoorthy, 1986:81;

Ramamoorthy, 1985:111-112)

In order to make intelligent choices of requirement

metrics on which to focus further research efforts and to use

on future software developments, information about the

utility of various metrics is needed. However, only a meager

amount of research has been conducted to identify useful

requirement metrics; i.e., requirement metrics that can be

used effectively. This research effort is intended to

provide some of this information.

Research Objective.

The objective of this study is to determine the relative

utility of selected software requirement metrics in assessing

the productivity of the requirements analysis process and the

quality of the products of this process. This objective is

4

met by determining the relative utility of selected software

requirement metrics to practicing software engineers and

computer scientists, persons serving in a software engineer's

or computer scientist's position, software systems project

managers, persons teaching courses in a software engineering

or computer science curriculum, and persons performing

research in the area of software metrics. (Hereafter, these

persons are referred to as software professionals.) The

perceptions these software professionals have of the utility

of software requirement metrics provide an indication of the

usefulness of the metrics when applied to actual requirements

analyses.

Research Scone

The first part of this study includes an extensive

review of past research and available documentation on

various topics dealing with requirements analysis and

software metrics. The second part is limited to an analysis

of the perceptions that software professionals have of the

utility of selected requirement metrics in assessing the

productivity of the requirements analysis process and the

quality of the products produced by this process.

This study does not address the correlation of

requirement metric measures, estimates, and predictions with

5

actual software product or process characteristics.

Furthermore, no attempt is made to collect data about

quantifiable attributes of the software requirement process

or rroducts, nor is any attempt made to measure the

competency of the software professionals taking part in this

study. Rather, this study focuses on the utility of selected

or candidate metrics for use during software requirements

analyses.

Basic Methodology

Although a detailed discussion of the research

methodology is provided in Chapter III, an overview is

provided here to help the reader better understand the

ensuing text.

The design of this study is based in part on the

goal/question/metric paradigm proposed by Basili and Rombach.

This paradigm consists of three steps. The first step is to

identify a goal or set of goals. In most cases the goal is

to improve a process or product. The second step involves

formalizing the goal into questions that, if answered, result

in realization of the goal. The questions must focus on

factors that are germane to the goal and are usually posed in

the form: Does a relationship exist between input variable A

and output variable B? In the third and last step, metrics

6

are developed or identified to provide the information needed

to answer the questions posed in step two. (Basili,

1987:350-351; Shepperd, 1990:312)

After these actions have been performed, the metrics

identified ih step three must be examined to see which will

most likely help attain the goals set in step one. This may

be accomplished in several ways. The method used in this

effort was to survey software professionals about their

perceptions of the utility of the metrics selected in step

three.

Inve.tigative Oueationg

In order to determine the relative utility of various

requirement metrics, several issues must be investigated.

The first of these issues are posed in the form of questions

using the goal/question/metric paradigm:

(1) What are the specific goals for improving the

requirements analysis phase of the software

development life cycle?

(2) What questions can quantify these goals?

(3) What metrics might provide the information

needed to answer these questions?

7

Once these questions have been answered, specific

questions can be asked about the metrics identified in the

answer to question three:

(4) What is the relative ranking, in terms of

perceived utility, of the software metrics

available for use during requirements analysis?

(5) which requirement metrics, if any, are ranked

significantly higher than the others? Which are

ranked significantly lower?

(6) Are there significant differences between the

rankings for product and process type metrics?

(7) Is there a significant correlation between a

software professional's experience and the

perception of the utility of a particular

requirement metric?

Backaround

As stated earlier, software metrics are used to

quantitatively measure the essential features of software so

that comparison of the features can be made against some

standard; usually a requirement, goal, or expectation.

Although metrics have been developed for and used during

8

virtually every phase of the software life cycle, and even

though requirement metrics can be more useful than other

metrics, relatively few requirement metrics have been

developed. A discussion of these requirement metrics is

provided in the following chapter.

II. Literature Review

This chapter is intended to provide a review of the

software metrics that have been developed for use during the

requirements analysis phase of the software life cycle. To

this end, this chapter is essentially a compendium of various

requirement metrics. Additionally, other measures and

measurement techniques which fall under a loose definition of

the term "software metric" and which may be of value during

requirements analysis are discussed. For organizational

purposes, this literature review is divided into two sections

corresponding to the two basic categories of metrics; process

and product metrics. Product metrics have been further

categorized according to the characteristic of the product

they are intended to measure. Lastly, please note that the

terms "metric" and "measure" used throughout the following

text are interchangeable.

Process Metrics

The IRPR Guide for the jse of IEEE Standard Dictionary

of Measures to Produce Reliable Software states that "process

measures address cause and effect cf both the s-:atic and

dynamic aspects of the development and support management

processes necessary for maximizing productivity and quality"

(IEEE, 1989:27). In other words, process metrics are

10

measures applied to the development process in order to

quantify attributes of the development process and

environment (Conte, 1986:19-20). These measurements are made

in order to better understand the process and, eventually,

improve it.

The IEEE Standard Dictionary of Measures to Produce

Reliable software identifies several metrics that may be

applied to the requirements analysis process. The first

measure included in this discussion, named the fault-days

number, "represents the number of days that faults spend in

the software system from their creation to their removal."

The information collected for this measure includes the phase

and date when the fault was introduced in the system, and the

phase, date, and time when the fault is removed. The fault-

days number is computed as follows:

For each fault detected and removed, during any
phase, the number of days from its creation to its
removal is determined (fault-days).

The fault-days are then summed for all faults
detected and removed, to get the fault-days number
at system level, including all faults
detected/removed up to the delivery date. In cases
when the creation date is not known, the fault is
assumed to have been created at middle of the phase
in which it was introduced. (IEEE, 1989:42-43;
IEEE, 1988:16-17)

The second applicable process measure from the IEEE

Standard is the error distribution measure. This metric

"involves the analysis of the defect data collected during

11

each phase of the software development" and "allows ranking

of the predominant failure modes." The data needed to

perform this measure is collected in order to adequately

describe the errors. This data includes error type, error

severity, the phase the error was introduced into the system,

and measures that can be taken to prevent reoccurrence of

similar errors. Faults associated with one another are

identified, as is each fault's discovery mechanism, including

the reasons any associated faults were previously undetected.

The error distribution is determined as follows:

The [data] for each error are recorded and the
errors are counted according to the criteria
adopted for each classification. The number of
errors are then plotted for each class. The errors
are classified and counted by phase, by the cause,
and by the cause for deferred fault detection.
Other similar classifications could be used such as
the types of steps suggested to prevent the
reoccurrence of similar errors or the types of
steps suggested for earlier detection of the
corresponding faults. (IEEE, 1989:49-51; IEEE,
1988:19)

The IEEE Standard also describes a measure of the

manhours per major defect detected during software product

inspections. "This measure provides a quantitative figure

that can be used evaluate the efficiency of the - inspection

process" and can be used to evaluate inspections of

requirements specifications. The data needed to compute this

measure are:

T 1 = Time expended by the inspection team in
preparation for the inspection meeting.

12

T2 = Time expended by the inspection team in
conduct of an inspection meeting.

Si = Number of major (non-trivial) defects detected
during the ith inspection.

I = Total number of inspections to date.

This measure is implemented as follows:

At each inspection meeting, record the total
preparation time expended by the inspection team.
Also, record the total time expended in conducting
the inspection meeting. All defects are recorded
and grouped into major/minor categories. (A major
defect is one which must be corrected for the
product to function within specified requirements.)

The inspection times are summarized and the defects

cumulatively added.

The manhours per major defect detected is:

(TI + T2)i
i= IM=

XSi

(IEEE, 1989:52-53; IEEE, 1988:19)

The last applicable process metric identified in the

IEEE Standard, named the defect index, is actually both a

process and a product measure. "This measure provides a

continuing, relative index of how correct the software is as

it proceeds through the development cycle." It consists of

eight primitives for each life cycle phase, including three

weighting factors for defect severity level. (An item is

considered primitive if it cannot be partitioned into

13

subordinate components. For the purposes of this study, a

primitive is an elementary data item.) The primitives from

each phase are mathematically combined to compute a phase

index, after which all phase indices are summed to compute

the overall defect index. (IEEE, 1989:48-49; IEEE, 1988:18-

19)

The last process measure which may be used during

requirements analysis and, in fact, during any and all life

cycle phases is a schedule progress metric proposed by

Schultz. This measure "tracks the - ability to maintain the

software development schedule by tracking the delivery of

software work packages defined in the work breakdown

structure." It takes the following form:

Estimated Schedule (months) - Program Schedule (months)
BCWP
BCWS

where BCWP is the budgeted cost of work performed and BCWS is

the budgeted cost of work scheduled; two fairly common cost

accounting terms. (Schultz, 1988:22)

Product Xetrics

Product metrics are measures applied to a software

product in order to quantify attributes of that product

(Conte, 1986:19-20). These measurements are made in order to

better understand and, eventually, improve the product. The

14

product to be measured and of interest in this research

effort is the product of the requirements analysis process; a

formal or informal software requirements specification.

For organizational purposes, it is convenient to

associate possible requirement product metrics with the

qualities they are intended to measure. To that end, the

most appropriate qualities to use are the characteristics of

good software requirements specifications (SRS) as defined in

the IEEE Guide to Software Reauirements Specifications.

According to the IEEE Guide, a good SRS is (1) unambiguous,

(2) complete, (3) verifiable, (4) consistent, (5) modifiable,

(6) traceable, and (7) useable during the operation and

maintenance phase. (IEEE, 1984:11-13)

Measures of ReAuirement Ambiguity. (IEEE characteristic

(i) unambiguous.) Gause and Weinberg have proposed using "an

ambiguity poll to estimate the ambiguity of a requirement."

This ambiguity poll is performed "whenever a piece of

requirements work is said to be finished" with the purpose of

identifying ambiguous requirements. The poll is conducted as

follows:

(1) Gather a group of people to answer questions
about the document whose ambiguity is to be
measured.

(2) Be sure that there is no pressure to conform,
or no influence of any sort of one participant on
another.

15

(3) Propose a set of questions, each of which can
be answered with a number, such as: How fast? How
big? How expensive? What capacity?

(4) Estimate the ambiguity by comparing the
iighest and lowest answers.

(5) Interview the high and low estimators to help
locate the sources of the ambiguity.

Gause and Weinberg advise that, to obtain the most reliable

results, "the group used for estimating ambiguity should be

as diverse as possible, at the very least including a sample

from each population that will be affected by the eventual

product." (Gause, 1989:217-224)

Cioch proposes a similar technique to measure an

iifividual's misinterpretation and comprehension of

statements. His method, which may also be used to identify

ambiguous requirements, is based on short-answer questions as

opposed to the open-ended questions used by Gause and

Weinberg. Cioch describes his technique as follows:

The proposed approach to measuring
misinterpretation and comprehension involves the
use of short-answer items in a test instrument. In
order to differentiate between misinterpretation
and comprehension, the measurement technique must
be able to distinguish between not kiowing the
correct answer and giving a wrong answer.

The short-answer question type developed to yield
this distinction is a mcdified version of a
standard true/false question. - [The] participant
is presented with a collection of statements, the
truth or falsity of which must be judged. Instead
of responding true or false, the participant
answers with a number from I to 5, depending upon
which of the following best describes the
participant's view of the statement's veracity:

16

I = I am certain this statement is false
2 = I am fairly sure this statement is false
3 = I don't know
4 = I am fairly sure this statement is true
5 = I am certain this statement is true

[Points are awarded based on whether the statement
is, in actuality, true or false, and on the
participant's response.] - For the measure of
comprehension, points are awarded only when the
participant is either fairly sure or certain of the
correct answer. - In measuring misinterpretation,
points are awarded only when the participant is
either fairly sure or certain of an answer, and
that answer is incorrect. - Assuming the
particular statement is true, the following
relationship exists between points awarded for the
comprehension and misinterpretation measures:

Comprehension and Misinterpretation Measurement Scales

Compre- Misinter-Response hension pretation
I am certain this statement is false 0 2
I am fairly sure this statement is false 0 1
I don't know 0 0
I am fairly sure this statement is true 1 0
I am certain this statement is true 2 0

Figure 1. Comprehension and Misinterpretation
Measurement Scales (Cioch, 1991:87)

A complementary measurement scheme is used when the
statement is false. (Cioch, 1991:86-87)

The IEEE Standard Dictionary of Measures to Produce

Reliable Software identifies the technique of cause and

effect graphing as a means of identifying both ambiguous and

incomplete requirements:

Cause and effect graphing aids in identifying
requirements that are incomplete and ambiguous.

17

This [technique] explores trhe inputs and expected
outputs of a program and identifies the
ambiguities. Once these ambiguities are
eliminated, the specifications are considered
complete and consistent.

[Furthermore,] a cause and effect graph is a formal
transformation of a natural language specification
[for example, written in English] into its input
conditions and expected outputs.

The primitives (data) needed to compute this measure include:

List of causes: distinct input conditions

List of effects: distinct output conditions or
system transformation (effects are caused by the
changes in the state of the system)

Aexisting = number of ambiguities in a program
remaining to be eliminated

Atot = total number of ambiguities identified

The measure is computed as follows:

Identify all requirements and divide them into
separate entities. Analyze the requirements to
identify all the causes and effects in the
specification. After the analysis is completed,
assign each cause and effect a unique identifier.
For example, El for effect one or Ii for input one.

To create the cause and effect graph:

(1) Represent each cause and each effect by a node
identified by its unique number.

(2) Interconnect the cause and effect nodes by
analyzing the semantic content of the specification
and transforming it into a Boolean graph. Each
cause and effect can be in one of two states: true
or false. Using Boolean logic, set the possible
states of the causes and determine under what
conditions each effect will be present.

(3) Annotate the graph with constraints describing
combinations of causes and effects that are
impossible because of semantic or environmental
constraints.

18

(4) Identify as an ambiguity any cause that does
not result in a corresponding effect, any effect
that does not originate with a cause as a source,
and any combination of causes and effects that are
inconsistent with the requirement specification or
impossible to achieve.

The measure [of ambiguities present] is computed as
follows:

CE() = 100 x (1 -Aexisting)
Atot

When all of the causes and effects are represented
in the graph and no ambiguities exist, the measure
is 100%. A measure of less than 100% indicates
some ambiguities still exist. (IEEE, 1989:45-47;
IEEE, 1988:17-18)

The IEEE Standard describes a second graphical technique

that can be used to identify requirements which may be

misinterpreted. This technique and its associated measures

of requirements compliance are ascertained through a

graphical analysis of the software requirements

specification. This metric, appropriately named the

requirements compliance measure, can be used to identify and

quantify inconsistencies, incompleteness, and

misinterpretations in the software requirements

specification.

This analysis is used to verify requirements
compliance by using system verification diagrams
(SVDs), a logical interconnection of stimulus
response elements, (e.g., stimulus and response)
that detect inconsistencies, incompleteness, and
misinterpretations.

19

The primitives for this measure are:

Decomposition elements (DEs):

Stimulus = external input
Function = defined input/output process
Response = result of the function
Label = numerical DE identifier
Reference = specification paragraph number

Requirement errors detected using SVDs:

N1 = Number due to inconsistencies
N2 = Number due to incompleteness
N3 = Number due to misinterpretation

The implementation of an SVD is composed of the
following phases:

(1) The decomposition phase is initiated by
mapping the system requirement specifications into
stimulus/response elements (DES). That is, all
keywords, phrases, functional and/or performance
requirements and expected outputs are documented on
decomposition forms.

(2) The graph phase uses the DEs from the
decomposition phase and logically connects them to
form the SVD graph.

(3) The analysis phase examines the SVD from the
graph phase by using connectivity and reachability
matrices. The various requirement error types are
determined by examining the SVD and identifying
errors as follows:

(a) Inconsistencies - Decomposition elements
that do not accurately reflect the system
requirement specification.

(b) Incompleteness - Decomposition elements
that do not completely reflect the system
requirement specification.

(c) Misinterpretation - Decomposition
elements that do not correctly reflect the system
requirement specification. These errors may occur
during translation of the requirements into
decomposition elements, constructing the SVD graph,
or interpreting the connectivity and reachability
matrices.

20

An analysis is also made of the percentages for the
various requirements error types for the respective
categories: inconsistencies, incompleteness, and
misinterpretation.

NI
Inconsistencies (%) (Nj + N2 + N3) x 100

Incompleteness (%) (Ni + N2 +N3) x 00

N3
Misinterpretation (%) (Ni + N2 + N3) x 100

(IEEE, 1989:70-72; IEEE, 1988:25-26)

The next measure is not a measure of the ambiguity of

requirement statements, rather it is a measure of the

understandability of semantic statements; i.e., written in

English. However, this measure, the Flesch-Kincaid

readability formula, may be useful in identifying poorly

stated requirements such as easily misunderstood or ambiguous

requirements. The measure is also very simple, and is

described here:

The formula has two factors: (I) sentence length
in words and (2) word length in syllables. It
provides grade level (GL) according to the formula:

GL = 0.39 (Average number of words per sentence)

11.8 (Average number of syllables per word)

(Losa, 1983:5)

Another measure of the understandability of semantic

statements is Gunning's Fog Index of Readability. This index

"measures the ease of reading a document based on syntactic

21

properties of the text" (Farbey, 1990:64). It is important

to note that this is not an absolute measure of readability

but, rather, "an index - that shows changes in (the]

magnitude" of readability (Farbey, 1990:64). Gunning's Fog

Index was originally published in his book The Techniaue of

Clear Writing. The Fog Index, as described by Eisenberg, is

calculated using the following procedure:

(1) Divide the number of words [in the passage] by
the number of sentences. This yields the average
number of words per sentence.

(2) Count words of three or more syllables (except
for proper nouns). Divide this number by the total
number of words in the [passage]. The answer is
the percentage of difficult words in the [passage].

(3) Add the average number of words in a sentence
to the percentage of difficult words.

(4) Multiply the total by 0.4. This gives a Fog
count. A count of 10 means the passage should be
easy reading for the average tenth grader.
(Eisenberg, 1982:290)

A third measure of the understandability of requirement

specifications is proposed by Ramamoorthy. Ramamoorthy

proposes using several metrics to measure how understandable

a specification is "because a single metric cannot cover

every aspect of the [software system]." He also states

"that the measured values may be objective, but usage of them

should be subjective." These measures include the number of

functions specified (for example, lines of statement of

formal specification language, number of states in state

transition model), the connectivity of functions, the amount

22

of data processed, the connectivity of data, and other

various measures. (Ramamoorthy, 1986:81-82)

Measures of Specification Comnpeteness. (IEEE

characteristic (2) complete.) The IEEE Standard identifies

the following measure of "the completeness of the software

specification during the requirements phase" which can also

be "used to identify problem areas within the software

specification." Furthermore, the IEEE Quide for the Use of

IEEE Standard Dictionary of Measures to Produce Reliable

software reports that this measure has seen moderate use (as

opposed to limited or extensive use) in the software

ccmnunity. (IEEE, 1989:25-26, 89-90; IEEE, 1988:32-33)

The completeness measure consists of the following
primitives:

Bi = Number of functions not satisfactorily defined

B2 = Number of functions

B3 = Number of data references not having an origin

B4 = Number of data references

B5 = Number of defined functions not used

B6 = Number of defined functions

B7 = Number of referenced functions not defined

B8 = Number of referenced functions

B9 = Number of decision points not using all
conditions, options

BI0 = Number of decision points

23

BI = Number of condition options without

processing

B12 = Number of condition options

B1 3 = Number of calling routines with parameters
not agreeing with defined parameters

B1 4 = Number of calling routines

B15 = Number of condition options not set

B16 = Number of set condition options having no
processing

B17 = Number of set condition options

B18 = Number of data references having no
destination

The measure is implemented as follows:

The completeness measure (CM) is the weighted sum
of ten derivatives expressed as:

10
CM= wiD i

where for each i=l,_,10, each weight wi has a value
between 0 and 1, the sum of the weights is equal to
I, and each Di is a derivative with a value between
0 and i.

To calculate the completeness measure, the
definitions of the primitives for the particular
application must be determined, and the priority
associated with the derivatives must also be
determined. This prioritization would affect the
weights used to calculate the completeness measure.

Each primitive value would then be determined by
the number of occurrences related to the definition
of the primitive.

Each derivative is determined as follows:

(B2 _- BI)
DI = -B2- = Functions satisfactorily defined

B2

24

D2 - B4 = Data references having an origin

(B6 - B5)
D3 B B6 = Defined functions used

(B8 - B7)
D4 = B8 = Referenced functions defined

D5 = (BI0 - Bg) = All condition options at decision810

points

D6 = B12 = All condition options with

processing at decision points used

D7 = (B14 - B13) -= Calling routine parameters thatB14
agree with the called routines defined parameters

D8 = (B12 - B =5)- All condition options that areB12
set

D9 = (B17 - B16) Processing follows set condition
Bj17

options

DO=(B4_ B) - Data references that have a

destination

The value of the completeness measure is scaled
between 0 and 1 by the appropriate weights. A
score near i is considered better than a score near
0. Those values near zero should be traced to the
suspect primitive(s) to highlight any need for
change in the software specification. As changes
are made to the specification, the incremental
specification measure values can be plotted to show
if improvements are being made and how rapidly.
(IEEE, 1989:89-90; IEEE, 1988:32-33)

Another possible completeness metric is actually a

measure of the information content of a specification and is

25

referred to as the "Bang" measure by its author, DeMarco. If

we consider specification information content to be analogous

with or related to specification completeness, a measure of

the information content of the specification might also

provide a measure of the completeness of the specification.

Likewise, we might consider the measure of information

content to provide an indication of how useful the

specification will be during operation and maintenance of the

system. Since the components and implementation of this

measure are lengthy and complex, they are not presented here.

And although a brief review of DeMarco's measure is provided

in Appendix A, readers are strongly encouraged to examine

DeMarco's work for these details. (DeMarco, 1982:80-81)

Agresti provides a set of measures that are somewhat

related to DeMarco's information content measure. Using a

requirements representation called the Composite

Specification Model (CSM) based in part on DeMarco's work,

Agresti experimented with 58 explicit measures. The CSM is

comprised of three views and corresponding notations (see

Figure 2) and acts as a template for specifying requirements.

Agresti's measures are organized according to the three views

of the CSM. The measures associated with the functional view

include a weighted function count and numerical counts of

functional primitives, interfaces, internal arcs, internal

data items, system input/output data items, and file

26

input/output data items. The measures associated with the

contextual view include numerical counts of entities, events,

relationships, attributes, and value sets. The measures

associated with the dynamic view include numerical counts of

states and transitions. Although Agresti describes these

measures as early indicators of system size and complexity,

they may also provide indications of the completeness of

specifications. (Agresti, 1984)

Composite Specification Model

Viewpoint Notation

Functional Data Flow

Contextual Entity-Relationship
Dynamic State-Transition

Figure 2. Composite Specification Model (Agresti, 1984)

Boehm hints that several simple, explicit counts may be

used to quantify specification completeness. Boehm states

that a specification must not have any TBDs (use of the

phrase "To Be Determined") nor any nonexistent references to

be considered complete. With this in mind, one can speculate

that counts of the number of TBDs and nonexistent references

in a specification will provide a measure of the completeness

of the specification. (Boehm, 1984:76-77)

27

The technique of cause and effect graphing described in

the IEEE Standard and discussed under the previous subheading

(Unambiguous) may also be helpful in identifying incomplete

requirements. (IEEE, 1989:45-47; IEEE, 1988:17-18)

The measure of requirements compliance, also described

in the IEEE Standard and discussed under the previous

subheading (Unambiguous), may also aid in identifying and

quantifying incomplete requirements. (IEEE, 1'):70-72;

IEEE, 1988:25-26)

Measures of Reauirement Verifiability (Testability).

(IEEE characteristic (3) verifiable.) According to the IEEE

Guide to Software Requirements Specifications, "a requirement

is verifiable if and only if there exists some finite cost-

effective process (to] check that the software product meets

the requirement" (IEEE, 1984:12). In other words, if we can

cost-effectively test a requirement, it is verifiable.

Ramamoorthy and others have proposed requirements

complexity metrics that can be used to infer the cost-

effectiveness, or difficulty, of testing requirements.

Ramamoorthy focused on measuring complexity during the

requirements phase and developed what is termed "a spectrum

of metrics" for requirements written in the control flow

requirement specification language RSL. (RSL is based on the

control flow and entity-relationship models of software

28

specification.) The control flow model is implemented

through a control flow graph consisting of nodes (specifying

processing operations) and connecting arcs. The proposed

complexity metrics are based on measures of the essential

elements of the specification language and model such as the

number of nodes, connecting arcs, and paths in the network.

The proposed metrics include several which are specifically

identified to infer a measure of the difficulty of testing

specifications and, therefore, the verifiability of the

specification. Again, since the details of these measures

are lengthy and complex, they are not presented here. And,

once again, although a brief review of these measures is

provided in Appendix A, readers are encouraged to examine

Ramamoorthy's work for further details. (Ramamoorthy,

1985:113-115)

Measures of Specification Consistency. (IEEE

characteristic (4) consistent.) The IEE Standard Dictionary

of Measures to Produce Reliable Software describes a simple

measure of the number of conflicting requirements.

This measure is used to determine the reliability
of a software system, resulting from the software
architecture under consideration, as represented by
a specification based on the entity-relationship-
attribute model. (IEEE, 1989:53; IEEE, 1988:21)

It is implemented and interpreted as follows:

The mappings from the software architecture to the
requirements are identified. Mappings from the
same specification item to more than one differing

29

requirement are examained for requirements
inconsistency. (If the same specification item
maps to two different requirements items, the
requirements should be identical. Otherwise, the
requirements are inconsistent.) Mappings from mcre
than one specification -i-tem to a single requirement
are examined for specification inconsistency.
(IEEE, 1989:53-54; IEEE, 1988:21)

The measure of requirements compliance described in the

IEEE Standard and discussed under the previous two

subheadings (Unambiguous and Complete) may also a41 in

identitying and quantifying inconsistent requirements.

(IEEE 1989:70-72; IEEE, 1988:25-26)

Measures of Specification Modifiabillty. (IEEE

characteristic (5) modifiable.) One criteria for

modifiability defined in the IEEE Guide to Software

Requirements Specifications is that "the same requirement

should not appear in more than one place in the

(specification]" since redundancy can easily lead to

inconsistencies (IEEE, 1984:12). Therefore, any of the

measures and techniques which help identify redundant or

inconsistent requirements (for example, some of the measures

discussed under the previous subheading (Consistent)) may

also aid in measuring the modifiability of specifications.

Ramamoorthy has proposed several dependency metrics for

requirements written in the control flow requirement

specification language RSL that can be used to measure "the

dependency of parts of the software on other parts"

30

(Ramamoorthy, 1985:114). These dependency metrics may

provide indications of the modifiability of the

specification.

The dependency metrics measure the dependency of
parts of the software on other parts. The greater
this dependency the more the chance that
modification of a part of the software due to a bug
will lead to other bugs in dependent parts of the
program. This is the ripple effect. One metric
for this is the number of requirement networks
(RNETs) that are enabled directly or indirectly
through a sequence of other RNETs. (Ramamoorthy,
1985:114)

Measures of Requirement Traceability. (IEEE

characteristic (6) traceable.) The IEEE Standard describes

an extensively used measure which "aids in identifying

requirements that are either missing from, or in addition to,

the original requirements." This measure is implemented and

interpreted as follows:

A set of mappings from the original requirements is
created. Count each requirement met by the
architecture (RI) and count each of the original
requirements (R2). Compute the traceability
measure (TM):

Ri
TM = x 100%

R2

When all of the original software requirements are
covered in the software architecture, the
traceability measure is 100%. A traceability
measure of less than 100% indicates that some
requirements are not included in the software
architecture. (IEEE, 1989:47-48; IEEE, 1988:18)

Measures of Specification Usability During Operation and

Maintenance. (IEEE characteristic (7) useable during the

31

operation and maintenance phase.) The IEEE Standard

identifies a measure of the quality of software documentation

and source listings. This measure, determined through the

use of questionnaires, may identify the areas of any software

product which might be inadequate for use in a software

maintenance environment. It is described in the IEEE

Standard as follows:

Two questionnaires, the Software Documentation
Questionnaire and the Software Source L.sting
Questionnaire, are used to evaluate the (format aad
content of] software products in a desk audit [from
a maintainability perspective]. The questionnaires
are contained in Software Maintainability-
Evaluation Guide. The guide can be ordered from
the Air Force Operational Test and Evaluation
Center. (IEEE, 1989:83-84; IEEE, 1988:29)

The measure of information content of a specification,

referred to as the "Bang" measure and discussed under an

earlier subheading (Cmplete), may also provide an indication

of how useful the specification will be during operation and

maintenance of the system. For example, a specification with

a high measure of information content might be more useful

when performing maintenance than a specification with a low

measure of information content. (DeMarco, 1982:80-81)

Checklist and Worksheet Measures of Specification

Quality. One popular technique of measuring the quality of a

software requirement specification is not appropriately

listed under any of the characteristics of a good

specification listed above, since it really measures the

32

quality of the document as a whole. This technique involves

using checklists or worksheets in a complete review or

inspection of the specification. "A checklist is a list of

the properties of the software that together determine

whether or how far the criteria have been met" (Farbey,

1990:64). More specifically, checklists are "specialized

lists, based on experience, of significant issues [required

to insure] successful software development" that are compared

against a specification in order to verify the specification

adequately addresses those issues (Boehm, 1984:80).

Worksheets are primarily used to translate specific

measurements of items on a checklist into a metric score.

The distinction is that worksheets are used to compute a

metric score whereas checklists are not. Several very

comprehensive sets of checklists and worksheets have been

published by the Air Force Systems Command's Electronic

Systems Division and Rome Air Development Center. Two of

these are the four volume Computer Systems Acauisition

Metrics Handbook prepared by Systems Architects, Inc. and the

three volume Software Ouality Measurement for Distributed

S technical report prepared by Boeing Aerospace Company

(Boeing Aerospace Company, 1983; Systems Architects, Inc.,

1982).

33

Conclusion

It is important to note that the metrics presented here

are comprised of software metrics specifically developed to

measure features of the requirements analysis process and

products, as well as other measures and measurement

techniques that may be of value during requirements analysis.

Whether a measure is developed for a specific purpose or

if it is being tested in a new application, the successful

use of metrics depends on the user's enforcement of a

disciplined data collection process and the serious review of

the data collected for each metric. When properly

implemented, metrics can provide early indications of

potential software development problems and can call

attention to and stimulate discussion leading to early

resolution of those problems. (Schultz, 1988:1)

The metrics identified in this literature review and the

references in which they may be found are summarized on the

next page in Table 1.

34

TABLE 1

Candidate Requirement Metrics

Fault-Days Number IEEE, 1989:42-43
IEEE, 1988:16-17

Error Distribution Measure IEEE, 1989:49-51
IEEE, 1988:19

Manhours Per Major Defect Detected IEEE, 1989:52-53
IEEE, 1988:19

Defect Index IEEE, 1989:48-49
IEEE, 1988:18-19

Schedule Progress Schultz, 1988:22

Ambiguity Poll Gause, 1989:217-224

Misinterpretation and Comprehension Cioch, 1991:86-87

Cause and Effect Graphing IEEE, 1989:45-47
IEEE, 1988:17-18

Requirements Compliance IEEE, 1989:70-72
IEEE, 1988:25-26

Flesch-Kincaid Readability Formula Losa, 1983:5

Gunning's Fog Index of Readability Eisenberg, 1982:290

Specification Completeness IEEE, 1989:89-90
IEEE, 1988:32-33

"Bang" - A Functionality Measure DeMarco, 1982:80-81

Composite Specification Measures Agresti, 1984

Control Flow Measures Ramamoorthy, 1986:81-82
Ramamoorthy, 1985:113-115

Number of Conflicting Requirements IEEE, 1989:53-54
IEEE, 1988:21

Requirements Traceability IEEE, 1989:47-48
IEEE, 1988:18

Software Documentation and Listings IEEE, 1989:83-84
IEEE, 1988:29

Explicit Count(s) Metrics Boehm, 1984:76-77
Fouser, 1988:6
Ramamoorthy, 1986:81-82
Ramamoorthy, 1985:113-115

Checklist and Worksheet Measures Systems Architects, 1982
_Boeing Aerospace Co., 1983

35

III Methodoloav

This chapter describes the methodology used to obtain

and analyze the data collected during this study. It

includes a discussion of the research methodology followed,

the survey instrument used, the data collection process, and

the data analysis techniques used in performing this study.

Research Methodoloay

As stated in Chapter II, the research methodology is

based in part on Basili and Rombach's goal/question/metric

(GQM) paradigm. The GQM paradigm consists of three steps

(Basili, 1987:350-351; Shepperd, 1990:312). All three are

completed in this study. Incidentally, in performing these

steps, the first three investigative questions put forth in

Chapter I are answered.

The first step is to identify a goal or set of goals.

In most cases the goal is to improve a process or product.

For this study, the overall goal was to improve the

requirements analysis phase of software development.

Although this goal is very admirable, it is vague and is

better represented by two less ambitious, more specific goals

that must be met in order to achieve the overall goal. These

36

specific goals, identified in response to investigative

question number one, were determined to be:

(1) To assess the productivity and quality of the

requirements analysis process.

(2) To assess the quality of the products being

produced by that process. (Dziegiel, 1991)

The second step of the GQM paradigm involves formalizing

the goals into questions that, if answered, result in

realization of the goals (Basili, 1987:350-351; Shepperd,

1990:312). In accomplishing this step, these questions were

found to be:

(I) Does the method in which requirements are

solicited from users, specified, and validated

against the original intent of the user have a

significant effect on software quality?

(2) Which requirements analysis and specification

practices produce the highest quality products?

Which produce the lowest quality products?

(3) What percentage of errors found throughout

development, testing, and operation are due to poor

requirements analysis and specification?

(Dziegiel, 1991)

37

These questions are offered as a response to investigative

question number two.

In the third and last step, metrics are developed or

identified to provide the information needed to answer the

questions posed in step two (Basili, 1987:350-351; Shepperd,

1990:312). Since the author does not have the expertise to

develop metrics specifically for this purpose, an alternative

solution had to be found. Consequently, an extensive

literature review was performed to identify metrics that

might provide this information. The collection of metrics

resulting from this review are presented in Chapter II. This

collection was assembled in response to investigative

question number three.

Since the metrics identified in the literature review

collectively held only a small likelihood of providing the

information needed to answer our questions and, subsequently,

fulfill our goals, further research was required. In order

to more positively determine which metrics should provide

this information, an analysis of the perceptions that

software professionals have of the utility of various metrics

identified in the literature review was performed. This

analysis focused on the perceptions that software

professionals have of the utility of various metrics in

assessing the productivity of the requirements analysis

38

process and the quality of the products produced by this

process.

Justification of Approach

A survey and semi-structured interview were used to

collect data of software professionals' perceptions of the

utility of various requirement metrics. These perceptions

provide indications of the usefulness of these metrics when

applied to actual requirements analyses. A survey was used

to gather initial data and a follow-up interview was

selectively used to further investigate significant aspects

of the survey data.

This approach was chosen because no other data was

readily available or could be obtained to adequately fulfill

the research objectives. A better approach would have been

to collect data from actual experiences with the various

requirement metrics. However, since these metrics are only

in very limited use (if they are being utilized at all), the

author was not able to locate data of this kind.

Survey Instrument

The survey questionnaire consisted primarily of a series

of six questions designed to collect information about the

39

utility of selected software metrics when applied to software

requirements analyses. This series of questions was asked

for each metric included on the questionnaire. (The

questionnaire is provided as Appendix A.) Additionally,

three questions were asked to determine the level of

experience each participant had in performing requirements

analyses and their overall experience with software

development. This information was used as the basis for an

analysis of the validity of the data collected.

The questionnaire was designed to determine the metrics

that would be useful during the requirements analysis phase

of software development. The questionnaire included both

process and product metrics that could be applied to,

respectively, the requirements analysis process and formal or

informal software requirements specifications.

There were 18 metrics selected for use in the

questionnaire including 5 process metrics, i0 product

metrics, I collection of miscellaneous explicit product and

process measures (grouped together for the sake of brevity),

and 2 worksheet/checklist type measures. Of the 10 product

measures, 4 utilized graphical techniques and 4 were

applicable only to formal requirement specifications.

The selections were based on several criteria. The

first criterion was a desire to include a suitable number of

40

- 1t t ilII1

process and product metrics without the total number becoming

burdensome upon the participants. The second criterion was a

desire to include the broadest possible spectrum of different

types of measures; for example, metrics intended to measure

different product qualities, metrics applicable only to

formal specifications, and metrics applicable only to

informal specifications.

The third criterion was the necessity to include an

appropriate number of metrics that have been approved by the

Institute of Electrical and Electronics Engineers Standards

Board; i.e., metrics included in the IEEE Standard Dictionary

of Measurps to Produce Reliable Software. These were

included so that responses regarding these metrics could be

compared with the responses regarding the other metrics and

with IEEE data about experiences with these metrics. This

information provided an essential standard with which to

judge the quality of the survey data.

The last criterion was a desire to include a metric that

had little scientific basis in order to provide another

benchmark to compare the data with. This untested measure

would provide a benchmark just as the IEEE measures would,

except at the other end of the experience scale. For this

reason the author created a simple process measure based on a

ratio of the number of requirements already specified to the

estimated total number of requirements to be specified. This

41

measure was also similar to the indicator o requirements

stability suggested in Air Force Systems Command Pamphlec

800-43 (Department of the Air Force, 1990:11). The measure

took the form:

Progress = Number of requirements documentedEstimated total number of requirements x 100%

This measure was named the Requirements Documentation

Progress metric and was included on the questionnaire.

A list of the metrics included on the questionnaire and

the references they were taken from is provided on the

following page in Table 2.

The series of six questions included on the

questionnaire were not actually questions, but rather

statements that the respondents could agree or disagree with.

In order to collect data to determine the relative ranking of

each metric's utility, the participants were asked to select

an appropriate response to each statement according to a five

point Likert scale (Emory, 1980:271-274). An example of the

scale is provided in the following figure.

(a) (b) (C) (d) (e)
Strongly Neither Agree Strongly
Agree Agree Nor Disagree Disagree Disagree

Figure 3. Example of Scale Used on Questionnaire

42

TABLE 2

Requirement Metrics Included on the Questionnaire

Schedule Progress Schultz, 1988:22

Requirements Documentation Progress Created for this study

Fault-Days Number IEEE, 1988:16-17

Error Distribution Measure IEEE, 1988:19

Manhours Per Major Defect Detected IEEE, 1988:19

Requirements Understandability Losa, 1983:5

Requirement Ambiguity Gau ,, 1989:217-224

Requirements Traceability IEEE, 1988:18

Number of Conflicting Requirements IEEE, 1988:21

Requirements Compliance IEEE, 1988:25-26

Specification Completeness IEEE, 1988:32-33

Cause and Effect Graphing IEEE, 1988:17-18

"Bang" - A Functionality Measure DeMarco, 1982:80-81

Composite Specification Measures Agresti, 1984

Control Flow Measures Ramamoorthy, 1986:81-82
Ramamoorthy, 1985:113-115

Miscellaneous Explicit Counts Boehm, 1984:76-77
Fouser, 1988:6
Ramamoorthy, 1986:81-82
_Ramamoorthy, 1985:113-115

Completeness Checklist Systems Architects, 1982

Requirements Analysis Worksheet Boei-u Aerospace Co., 1983

Five of the six statements parallel the features of an

ideal software metric identified in the Software Engineering

Institute (SEI) curriculum module on software metrics.

According to the SEI, "ideal metrics should be simple,

43

precisely definable, objective, easily obtainable, valid, and

robust" (Mills, 1988:4). These statements were designed to

allow the participant to rate each metric according to

specific and independent factors. It was hoped that this

approach would limit bias in the data. The sixth statement

was intended to determine the participant's overall

assessment of the utility of the metric and could not be

designed to limit bias in the responses. The six statemencs

are:

(I) This metric is simple to understand and

precisely defined. (i.e., It is clear how this

metric is evaluated.)

(2) The data needed to calculate this metric is

easily obtained before or during requirements

analysis.

(3) The benefits derived from using this metric

outweigh the costs and effort of obtaining the data

to use it.

(4) This metric measures tne quality intended to

be measured.

(5) This metric is insensitive to small changes in

the requirements analysis process or product (as

applicable).

44

(6) This metric would be useful during

requirements analysis.

Additional comments about each metric were invited from

the participants. Space was provided on the questionnaire

for this purpose.

Data Collection

Data was collected using a three step process. The

first step involved identifying possible survey participants.

Originally, the survey was intended to include practicing

software engineers and computer scientists, persons serving

in a software engineer's or Computer scientist's position,

software systems project managers, persons teaching courses

in a software engineering or computer science curriculum, and

persons performing research in the area of software metrics.

However, in order to keep the validity of the data collected

as high as possible, only software professionals with

experience performing requirements analysis and a fair

knowledge of software metrics were surveyed. Due to these

rather stringent requirements, only a limited number of

persons from the original sample were identified, and would

be asked to participate. Furthermore, since only a limited

number of persons were surveyed (27 questionnaires were sent

to consenting participants and less than half responded),

45

this research should be considered a "pilot study" for

further research in this area.

Next, the participants identified in the first step were

contacted in person or by telephone, to discuss some of the

details of the study and to gain their consent to take part

in the study. When this permission was obtained, a

questionnaire was mailed to the participant.

Finally, follow-up interviews were conducted with

several participants to further investigate significant

aspects of the data collected through the survey. In these

cases, a semi-structured interview was used to probe for the

additional information needed to better understand the

original data. An example of the list of items discussed

during an interview is provided in Appendix B.

Data Analysis

Since only a limited number of persons were surveyed

and, subsequently, a limited amount of data collected,

detailed analysis of the data using statistical tests was not

appropriate. However, an analysis using descriptive

statistics was performed. This analysis was intended to

answer the remaining four investigative questions put forth

in Chapter I.

46

Descriptive statistics are commonly used to characterize

data. In this study, several descriptive statistics were

used to present and analyze the data including the response

mean and standard deviation. The mean response to a

particular statement was used to compute scores in order to

rank-order the metrics according to the participants'

perceptions of the utility of each metric. The response

standard deviation was used to measure the participants'

level of agreement with statements concerning their

perceptions of the usefulness of each metric.

Mean scores of the responses to each statement and a

ranking of each metric's utility were determined using two

mathematical equations. Equation (1) was used to compute a

mean score for the responses to each of the six statements.

MEAN SCORE (5A + 4B + 3C + 2D + E)
N

where: A = number of Strongly Agree responses

B = number of Agree responses

C = number of Neither Agree Nor Disagree responses

D = number of Disagree responses

E = number of Strongly Disagree responses

N = total number of responses

Equation (2) was used to compute an overall score for each

metric. The overall score was used to determine the relative

47

ranking of the metrics on the questionnaire based on the

participants' perceptions of the usefulness of each metric.

OVERALL SCORE = MS1 + MS2 + MS3 + MS4 + MS5 + 2MS6 (2)

where: MS1 = mean score on statement #1

MS2 = mean score on statement #2

MS3 = mean score on statement #3

MS4 = mean score on statement #4

MS5 = mean score on statement #5

MS6 = mean score on statement #6

Since the objective of this study was to determine the

perceived usefulness of various metrics, the author felt that

a participant's overall assessment of the utility of each

metric should be of greater importance in the ranking than

his assessment of the specific qualities of the metric. For

this reason the contribution of the score for statement six

is twice the contribution of the scores for each of the other

statements.

Additionally, the data was reviewed to determine if a

significant correlation existed between the software

professionals' experience and their perception of any or all

of the requirement metrics' utility. Once again, although

information about the experience level of the participants

was collected in the survey, no attempt was made to determine

the competency of the participants.

48

Finally, the data was inspected to determine if some

common thread could be found among the responses that

reflected any significant relationships that may have been

overlooked.

Concluion

This chapter described the methodology used to obtain

and analyze the data collected during this study. An

analysis of the data collected during this research effort

and a discussion of the findings of this study is provided in

the next chapter.

49

IV. FindtngA

This chapter presents the results obtained using the

methodology described in the previous chapter. The

demographics of the respondents are presented first and then

each of the seven investigative questions are answered.

DamoaraDhic Information

Just under half of the individuals who agreed to

participate responded; only 13 of 27 questionnaires were

returned. The experience levels and professional

responsibilities of the respondents are shown in Table 3.

TABLE 3

Respondent Demographic Information

Total number of respondents: 13

Years involved with software development:

5 or less: 0 IBetween 5 & 10: 2 110 or more: 11

Number of times involved with software requirements analyses:

5 or less: 3 IBetween 5 & 10: 3 .110 or more: 7

Current professional responsibilities:

Educational: 8 SW Development: 2 SW Research: 3

50

One point of particular interest is the high ratio of

respondents with educational responsibilities to respondents

with software development or research responsibilities.

Approximately equal numbers of each category agreed to

participate and were sent questionnaires. However, the

response rate for individuals with educational

responsibilities was much higher than the response rates of

the other categories.

Another important point is that the experience levels of

all of the participants are relatively high. This is

primarily a result of the screening process used to select

the participants. As mentioned in Chapter III, in order to

insure the validity of the data collected was as high as

possible, only software professionals with experience

performing requirements analysis and a fair knowledge of

software metrics were surveyed. The success of the screening

process is apparent in the demographics. However, the effort

to keep the data valid also caused a problem in answering the

last investigative question. This unexpected problem is

discussed further in the answer to investigative question

seven.

The last point of discussion is that the total number of

participants is relatively small, as was expected. The small

number of respondents does not provide enough data to draw

51

statistically significant conclusions about the utility of

any or all of the metrics. However, a qualitative analysis

of the data can be and was performed. This analysis is

presented in the following sections.

Investigative Oueztions I - 3

The first three investigative questions were based on

the goal/question/metric paradigm proposed by Basili and

Rotbach (Easili, 1987:350-351; Shepperd, 1990:312):

(1) What are the specific goals for improving the

requirements analysis phase of the software

development life cycle?

(2) What questions can quantify these goals?

(3) What metrics might provide the information

needed to answer these questions?

The answers to these questions were presented in the Research

Methodology section of Chapter III and are not repeated here.

Invegtigative Oumation 4

The purpose of investigative question four was to

determine the relative ranking, in terms of perceived

utility, of the software metrics available for use during

52

requirements analysis. The rankings and the overall scores

used to compute the rankings, shown on the next page in Table

4, were determined using the equations discussed previously

in the Data Analysis section of Chapter III. However, as

shown, the differences between the overall scores are trivial

and, therefore, the rankings are meaningless. In other

words, the respondents, as a group, believe the utility of

all of the metrics are about equal. No metric is perceived

as more or less useful than any other metric. This

perception is also reflected in the responses to survey

statement number six. (Statement six allowed the respondents

to directly state their opinions of the utility of each

metric.) For the sake of comparison, a ranking of the

metrics according to the mean scores for statement six are

also shown in Table 4. (The mean scores for all survey

statements are provided in Appendix C.)

Some of the similarities in the two sets of rankings can

be attributed to the scoring system used to rank-order the

metrics. The overall scores were calculated using "two

parts" of the mean score for survey statement six and "one

part" each of the mean scores for statements one through

five. Thus, the rankings by overall score are influenced

twice as much by the responses to survey statement six as by

the responses to the other statements.

53

TABLE 4

Relative Ranking of Metrics

Included on the Questionnaire

Ranking Ranking by
by Statement 6

Title of Metric Overall Score Mean Score
(Overall Score) (Mean Score)

Error Distribution Measure 1 (23.3) 9 * (3.2)

Miscellaneous Explicit Counts 2 (23.2) 2 * (3.5)

Manhours Per Major Defect Detected 3 (23.0) 2 * (3.5)

Requirements Analysis Worksheet 4 (22.5) 1 (3.7)

Requirement Documentation Progress 5 * (22.3) 6 * (3.3)

Completeness Checklist 5 * (22.3) 2 * (3.5)

Control Flow Measures 7 (21.8) 2 * (3.5)

Schedule Progress 8 (21.3) 12 * (2.8)

Requirements Traceability 9 * (21.0) 9 * (3.2)

Requirements Compliance 9 * (21.0) 6 * (3.3)

Specification Completeness ii (20.8) 9 * (3.2)

Cause and Effect Graphing 12 * (20.2) 6 * (3.3)

Fault-Days Number 12 * (20.2) 12 * (2.8)

.Bang" - A Functionality Measure 14 (18.8) 12 * (2.8)

Composite Specification Measures 15 (18.3) 15 * (2.7)

Requirements Understandability 16 (18.0) 18 (1.8)

Number of Conflicting Requirements 17 (17.2) 16 (2.5)

Requirement Ambiguity 18 (15.0) 17 (2.3)

NOTIS: i. * signifies a tie in ranking.
2. Overall and mean scores used to determine the
rankings were calculated only to within a l0th of a
point; i.e., 2.5 points.

54

The finding that the rankings are inconclusive is

supported in that the overall scores are generally within one

standard deviation of each other. Furthermore, the overall

scores and mean scores for survey statement six are generally

all in a range of values corresponding to an indifferent

(neither agree nor disagree) response. This range is

approximately equal to an overall score of 17-25 and a mean

score for statement six of 2.5-3.5. A plot of the overall

scores is provided in Figure 4 and a plot of the mean scores

for statement six is provided in Figure 5. The plots include

error bars equal to the standard deviation for each score in

order to display the trivial differences between overall

scores and between mean scores for statement six. Where the

error bars overlap for scores of two or more metrics, one

score cannot be considered significantly larger or smaller

than another score. These plots make it readily apparent

that the relative rankings are questionable.

One additional finding is apparent in Figure 6. In

Figure 6, the average mean scores for survey statements one

through five and the mean scores for statement six are

plotted together for comparison. It is fairly evident that a

correlation exists between the two sets of mean scores.

(Recall that statements one through five were used to

determine the participants' opinions of how each metric

compared to the five qualities of an ideal metric and

55

o (a

41~ 05

4) m)

a),D >~-

-41 U L)

BE led: '4
02'x U___ _ . U

.4 02"

4J Q -4 0

1 rq

U.,0 0 0 m f

56

44.

____ __H 0

-4 -

04

Uf 4 0

41 a 0

4.)~

r.. -

_ _ _M_ (p)-

4_ 0j-4

fn (-1 -A

ri1

75o

i-u

O0 E

0. 1- a

E E

2-U CO

1)41

004

(Ti 04 U

_
a))

L i

02

W 61- A

0) a))

U.44 4 :-5Id-

a) a

1-4 (aa)4

0 0

a)Q
00

Cn 1)(" 4

58 (

statement six was used to allow the participants to directly

state their opinions of the utility of each metric.) It is

gratifying to see that the participants' overt opinions of

the usefulness of the metrics appear to match their opinions

of how the metrics compare to the qualities of good metrics.

Although the correlation shown in Figure 6 is not

statistically significant and does not prove anything, it

does indicate that the six statement methodology was probably

sound.

Inventiaative Oueution 5

The purpose of this investigative question was to

determine which requirement metrics, if any, were perceived

as significantly more or significantly less useful than other

metrics. As presented in the previous section, the data does

not indicate that any of the metrics were perceived to be

significantly more useful than the others. Once again, the

respondents generally were indifferent as to the utility of

the metrics on the questionnaire.

However, there is an indication that the measures of

requirements understandability, requirement ambiguity, and

the number of conflicting requirements are perceived to have

the least utility of all the metrics on the questionnaire.

These measures placed in the bottom of the rankings and had

59

overall scores corresponding to the bottom of the indifferent

range. In other words, the respondents, as a group, had

slightly negative perceptions of the utility of these

measures. The rankings and scores for these metrics are

provided below in Table 5.

TABLE 5

Least Useful Requirement Metrics

Overall Overall Statement 6
Title of Metric Ranking Score Mean Score

Requirement Ambiguity 18 15.0 2.3

Number of Conflicting Requirements 17 17.2 2.5

Requirements Understandability 16 18.0 1.8

During the follow-up interviews, several participants

provided the principal reasons lower scores were assigned to

these measures:

Requirements understandability: "The formula cannot possibly

be reliable for highly technical specifications."

Requirement ambiguity: "This metric is too dependent on the

wording of the questions used in conducting the poll and,

therefore, would be too subjective to be useful."

Number of conflicting requirements: "This metric is too

difficult to perform."

60

Investigative Ouestion 6

This question was intended to identify any significant

differences between the rankings for product and process type

metrics. No significant differences were found. A review of

Table 4, Figure 4, and Figure 5 indicates that the five

process metrics included on the questionnaire (schedule

progress, requirements documentation progress, fault-days

number, error distribution measure, - d manhours per major

defect detected) are perceived to have the about the same

utility as the product metrics.

Invemtiaative Oueation 7

The last investigative question was intended to identify

any significant correlations between a software

professional's experience and the perception of the utility

of a particular requirement metric. Due to the screening

process mentioned earlier, only relatively highly experienced

personnel were surveyed. A lack of relatively unexperienced

participants make it impossible to determine if any

statistically significant correlation exists.

However, comments written on the questionnaire and made

during follow-up interviews provide some rather meaningful

61

information. These comments, provided by the respondents

with the most experience with software metrics and summarized

here, referred to the formality and preciseness of the

metrics on the questionnaire. These respondents point out

that metrics that are precisely defined and have detailed

descriptions of the use of the metrics would be considered

more useful than metrics that are not precisely or formally

defined. This sentiment reflects the respondents, beliefs

that they would be more confident about the utility of

metrics that are precisely defined as opposed to metrics with

only an implied use. These beliefs are revealed in one

respondent's comments: "The metrics presented are not

defined formally * precisely. - The need for formalism

[must be stressed]."

Conclusionk

This chapter presented the basic findings resulting from

performing this study. A discussion of the significant

conclusions that can be drawn from these findings is provided

in the next chapter.

62

V. conclusions and Recommendations

This chapter provides a summary of this study, presents

the significant conclusions that are derived from the

research findings, and offers several recommendations for

revised and follow-on research.

Project Overview

This study was performed in an attempt to gather

information about the usefulness of various software

requirement metrics. A broader goal was to provide some of

the information needed to make intelligent choices of

requirement metrics on which to focus further research

efforts and, more importantly, to use on future software

developments.

The study employed a two part methodology. In the first

part, the specific goals of the requirements measurement

effort and the requirement metrics worthy of further

investigation were identified. In the second part, a survey

was conducted to determine the perceptions that software

professionals have of the utility of several metrics selected

from those identified in part one.

63

Conclusning

The findings presented in the previous chapter support

only one significant conclusion. Unfortunately, this

conclusion does not directly correspond to the research

objective put forth earlier in this study.

The respondents, as a group, emphatically expressed the

opinion that a metric must be precisely defined for it to be

considered useful. The respondents claimed that, unless a

metric is precisely and formally defined and has a detailed

description of how to use it (implement it), they would be

skeptical about its utility.

This claim is not unreasonable. Kitchenham, Pickard,

and Linkman have stated that "it is clear that we must

improve metrics definitions if metrics are to be properly

validated" and later used on software developments

(Kitchenham, 1990:57). It is unmistakable that the

respondents agree with this opinion. It is also evident the

data collected in this study confirms the validity of Mill's

first criteria for an ideal metric; the requirement for

metrics to be "simple, precisely definable-so that it is

clear how the metric can be evaluated" (Mills, 1988:4).

64

Closina Discussion

Several aspects of the findings deserve further

discussion and are reviewed here. First, it should be made

cledr that the rankings derived from the data and presented

in this study are inconclusive. The data does not indicate

that any significant differences between the utility of the

selected requirement metrics exist. For example, eight of

the metrics included on the questionnaire are recommended by

the IEEE for use on software developments but were ranked no

higher or lower than the other measures. (One would expect

the IEEE recommended measures to be ranked at least slightly

-higher than the other measures.) In general, the respondents

were indifferent as to the utility of the metrics on the

questionnaire and reiterated the mixed opinions that software

professionals have of the usefulness of software metrics

(Mills, 1988:17). Furthermore, one metric, created by the

author as a means to help validate the data, ranked higher

than six of the IEEE approved metrics, including one with

"extensive experience in industry" (IEEE, 1989:26). Although

the IEEE experience ratings are caveated with the statement

"in no way does the experience rating imply that one measure

is better than another," the author wonders how a new measure

can actually be more useful than several other proven

65

measures (IEEE, 1989:25). For these reasons the rankings

should not be considered, in any way, conclusive.

Secondly, much of this study was based on an article by

Farbey in which he identified various metrics for use during

requirements analysis. Many of Farbey's recommended measures

were investigated in the course of this study. In concluding

his article, Farbey points out that "it may be that metrics

are not appropriate" for use with informal specifications

(Farbey, 1990:64). Since metrics used to measure the

qualities of informal specifications are difficult to define

and implement, and since this study found that metrics must

be precisely and formally defined to be useful, this study

may help prove him to be correct.

On the other hand, measures of the characteristics of

formal specifications such as Ramamoorthy's control flow

measures may, in fact, be very useful. Although the

respondents were generally indifferent about the utility of

all of the requirement metrics, the respondents' indicated

(in their responses to survey statement six) that they

believed the control flow measures could be more useful than

other measures. This could be interpreted as an indication

that the respondents believe measures of the characteristics

of formal specifications are more useful than other metrics.

If this interpretation is correct, it would support similar

66

views expressed by Agresti and Ramamoorthy. (Agresti, 1984;

Ramamoorthy, 1986:75-83; Ramamoorthy 1985:111-120)

Additionally, the National Aeronautics and Space

Administration's Jet Propulsion Laboratory (JPL) has been

collecting data of explicit measures of software since the

1970s including several explicit measures of the

characteristics of software requirements specifications

(Bush, 1989:iii; Fouser, 1988:6). After compiling and

analyzing this data "JPL now has a rough measurement

foundation for software productivity and software quality and

an order-of-magnitude quantitative baseline for software

systems" (Bush, 1989:26). It appears that JPL has made

progress in using quantitative data derived from explicit

metrics, including requirement metrics, to measure software

productivity and quality (Bush, 1989:28). On the other hand,

Agresti experimented with 29 objective measures such as the

explicit counts of number of pages, number of input/output

requirements, number of constraints, and found that "the

simple counts - were not useful measures because they reflect

the variability that is found in the representation of

requirements" (Agresti, 1984). These efforts provide two

benchmarks with which other experiences with simple, explicit

measures may be compared.

Another benchmark may be provided by Ramamoorthy's

experiments with his control flow measures on a development

67

at the University of California at Berkeley (Ramamoorthy,

1985:120). Even though details regarding Ramamoorthy's

experiments were not found during the course of this study,

data may be available in the future for use on new efforts

with requirement metrics.

Furthermore, it is also evident the data collected in

this study confirms a fairly common opinion that readability

formulas such as the Gunning Fog Index or the Flesch-Kincaid

formula "are not particularly useful to the technical writer"

(Riney, 1989:56-57, 208-209) . Riney asserts that "the

readability (of a technical document] is important; however,

the degree of accuracy of the (technical document] can mean

the difference between" a reader successfully interpreting

the text or misinterpreting it. It may be that precise

technical writing, such as the kind required in software

requirements specifications, is incompatible with truly

readable writing.

Although the conclusions of this study emphasize precise

and, therefore, objective metrics, subjective measures may

still be useful and should not be disregarded. For example,

Ross suggests that "subjective metrics are unreliable for

preliminary identification of anomalies but very useful when

diagnosing their causes" (Ross, 1990:85).

68

Finally, notwithstanding the inconclusive results of

this study, requirement metrics can be very useful. Sheppard

asserts:

The use of metrics derived from specifications and
designs is starting to be developed as a means of
obtaining early feedback [on software quality]. -
It may be argued that this has profound
consequences on the way in which software
development decisions can be made. Certainly, it
augments the traditional decision making by
guesswork or by analogy. (Sheppard, 1990:311)

RecOmmandations

It is recommended that this research be revised and

repeated. A revised study involving a similar methodology

should include the following changes:

(1) Define the metrics on the questionnaire more

precisely and/or replace them with more precisely

defined metrics.

(2) Provide detailed descriptions of how to use

(i.e., implement) the metrics.

(3) Reduce the number of metrics included on the

questionnaire in order to reduce the burden on the

participants and to insure the validity of the

responses.

69

(4) Survey more software professionals. Include a

larger proportion of persons involved with softwar

development and fewer persons from the academic and

research areas. The intent is to get more data

from people developing software as opposed to those

in an academic environment.

A revised study based on a new methodology could involve

a more detailed study of only a few metrics. One possible

research effort could be performed using one or several

metrics to measure a characteristic of an actual software

requirements specification and comparing those measures to

the perceptions software professionals have of that specific

quality. For example, the IEEE measure of specification

completeness could be used to measure the completeness of a

specification. The results of that measurement could then be

compared to the opinions software professionals have of the

completeness of the specification.

70

Appendix A

Software Requirements Analysis Metrics Questionnaire

This questionnaire is designed to determine the types of
software metrics which may be useful during the requirements
analysis phase of software development. Metrics applicable
to the requirements anal(is process and to the software
requirements specification (either formal or informal) are
discussed.

For each metric, please provide the appropriate responses to
the following six statements using the scale shown below:

I (a) (b) (C) Wd (6
Strongly Agree Neither Agree i Strongly
Aqree I Nor Disagree DIsagree Disagree

i. This metric is simple to understand and precisely
defined. (i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Please also provide any additional comments you may have
directly on the questionnaire.

This questionnaire should take about 45 minutes to complete.
When you have completed it, please return it in the envelope
provided.

Thanks very much for your participation.

71

Requirements Metrics Questionnaire

Please describe your past experience with scftware
development:

1) Approximately how many years have you been involved in
software engineering or management? (circle one)

5 years between 5 10 years
or less and 10 years or more

2) Approximately how many times have you performed or been
involved with software requirements analyses? (circle one)

2 times between 2 between 5 10 times
or less and 5 times and 10 times or more

3) Please provide your present title and briefly describe

your experience with software development.

Present title:

Experience:

72

Schedule Progress

Defnition: This metric measures the ability to maintain the
software development schedule by tracking the delivery of
software work packages defined in the work breakdown
structure.

Primitives:
Program Schedyle = numhber of months into development
BCWP = budgeted cost of work performed
BCWS = budgeted cost of work scheduled

Implementation:

Estimated Schedule (months) Program Schedule (months)
BCWP/BCWS

Please use this scale to respond to the following statements:

(a) (b) (C) Wd (e)
Strongly Neither Agree Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

73

Requirements Documentation Progress

n: This measure compares the actual number of
requirements documented with the estimated total number ct
requirements to be documented

Primitives:
Number of requirements specified
Est4mated total number of requirements to be specified

Imlementat ion:

Number of requirements documented
Progress = Estimated total number of requirements x 100%

NOTE: Number of requirements can also be replaced with any
objective count such as functions, pages, etc.

Please use this scale to respond to the following statements:

(a) (b) (C) Wd (6)
Strongly Neither Agree Strongly
Agtee Agree Nor Disagree Diree ee Disagree

I. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

74

Fault-Days Number

Dpfinition: This measure represents the number of days that
faults spend in the software system from creation to removal.
The goal is to prevent reoccurrence of similar errors and to
detect faults earlier.

Primwites
(1) Phase when the fault was introduced in the system.
(2) Date when the fault was introduced in the system.
(3) Phase, date, and time when the fault is removed.

Implementation: For each fault detected and removed, the
number of days from its creation to its removal is determined
(fault-days = FDi).

FDi = fault days for the ith fault

The fault-days are then summed for all faults detected and
removed, to get the fault-days number at system level,
including all faults detected/removed up to the delivery
date. In cases when the creation date is not known, the
fault is assumed to have been created at middle of the phase
in which it~was introduced.

Please use this scale to respond to the following statements:

(a) (b) (c) (d) (.)
Strongly Neither Agree Strongly
Agree Agree Nor Disagree Disagree Disagree

i. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

75

Error Distribution Measure

Definiion: This measure involves the analysis of the defect
data collected during each phase of the software development
and allows ranking of the predominant failure modes. The
goal is to prevent reoccurrence of similar errors and to
detect faults earlier.

Primitives:
(1) Fault type
(2) Fault severity
(3) Phase introduced
(4) Preventive measure
(5) Discovery mechanism

Imnlementation: The primitives for each error are recorded
and the errors are counted according to criteria adopted for
fault classification. The number of errors are then plotted
for each class. The errors are classified and counted by
phase, by cause, and by discovery mechanism.

Piease use this scale to respond to the following statements:

(a) j (b) (C) Wd (e)
Strongly Neither Agree Strongly
Agree I Agree Nor Disagree Disagree Disagree

I. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

76

Manhours Per Major Defect Detected

D2.Unition: A measure of the manhours per defect detected
during software product reviews and inspections. This
measure provides a quantitative figure that is used to
evaluate the efficiency of the review and inspection process.

Primitives:
T1 = time expended by the inspection (or review) team in

preparation for inspection (or review)
T2 = time expended by the inspection (or review) team in

conduct of inspection (or review)
Si = number of major (non-trivial) defects detected

during the ith inspection (or review)
I = total number of inspections (or reviews) to date

Tmnlpemntation: Record the preparation time (TI) and total
time expended in conducting each meeting (T2). Defects are
recorded and grouped into major/minor categories. (A major
defect must be corrected for the product to function as
desired.) Times are summarized and defects cumulatively
added. The manhours per major defect detected is calculated:

I
Y (Ti + T2)i
i=1

M=

Si

Please use this scale to respond to the following statements:

(a) (b) (C) (d)C)
Strongly Neither Agree Strongly
Agree Agree Nor Disagree Disagree

i. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

77

Requirements Understandability

Dpfinitinn: This is a measure of the understandability of
semantic requirements specifications (i.e. written in
English) using the Flesch-Kincaid readability formula.

Primitivpq: The Flesch-Kincaid formula has two factors:
(i) sentence length in words
(2) word length in syllables

Imnlementation: The measure of understandability is provided
as a reading grade level (GL) according to the formula:

GL = 0.39 (Average number of words per sentence)
+ 11.8 (Average number of syllables per word)

The measure may be made of complete or partial requirements
specifications, or of single requirement statements.

Please use this scale to respond to the following statements:

(a) (b) (C) W (*)
Strongly Neither Agree Strongly

Agree e Nor Disagree I Disagree

i. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

78

Requirement Ambiguity

n: This measure is used to estimate the ambiguity
of a requirement, and to identify ambiguous requirements.
This ambiguity poll is performed whenever a piece of
requirements work is said to be finished.

Pr.imives: None.

Implementation: The poll is conducted as follows:

1. Gather a group of people to answer questions about
the document whose ambiguity is to be measured. (The group
should be as diverse as possible, at the very least including
a sample from each population that will be affected by the
eventual product.)

2. Be sure that there is no pressure to conform or no
influence of any sort of one participant on another.

3. Propose a set of questions which can be answered
with a number such as: How fast? How big? What capacity?

4. Estimate the ambiguity by comparing the highest and
lowest answers.

5. Interview the high and low estimators to locate the
sources of the ambiguity.

Please use this scale to respond to the following statements:

(a) (b) (C) (d) (6)
Strongly Neither Agree Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the

costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

79

Requirements Traceability

f.injtiQU: This measure aids in identifying requirements
that are either missing from, or in addition to, the original
requirements.

Primitives:
R1 = number of requirements met by the architecture
R2 = number of original requirements

Imnlementatinn: A set of mappings from the requirements in
the software architecture to the original requirements is
created. Count each requirements met by the architecture
(RI) and count each of the original requirements (R2)
Compute the traceability measure (TM):

RI
TM=- x 100%R2

When all of the original requirements are covered in the
software architecture, the traceability measure is 100%. A
measure of less than 100% indicates that some requirements
have not been included in the software architecture.

Please use this scale to respond to the following statements:

(b) (C) (d) (a)
St: ngly Neither Agree Strongly
Agree Agree Nor Disagree Disagree Disagree

I. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

80

Number of Conflicting Requirements

Dnfinition: This measure is used to determine the
reliability of a software system, resulting from the software
architecture under consideration, as represented by a
specification based on the entity-relationship-attribute
model.

Primitives:
List of the inputs
List of the outputs
List of the functions performed by the program

Implementation: The mappings from the software architecture
to the requirements are identified. Mappings from the same
specification item to more than one differing requirement are
examined for requirements inconsistency. (If the same
specification item maps to two different requirements items,
the requirements should be identical. Otherwise, the
requirements are inconsistent.) Mappings from more than one
specification item to a single requirement are examined for
specification inconsistency. (If more than one specification
item maps to a single requirement, the specification should
be checked for possible inconsistency.)

Please use this scale to respond to the following statements:

(a) Wb (C) Wd (e)
Strongly Neither Agree Strongly
Agree Agree Nor Disagree Disagree Disagree

i. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the

costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

81

Requirements Compliance

Dn.pini .in: This analysis is used to verify requirements
compliance by using system verification diagrams (SVDs), a
logical interconnection of stimulus response elements, which
detect inconsistencies, incompleteness, and
misinterpretations.

Decomposition elements (DEs):
Stimulus - external input
Function - defined input/output process
Response - result of the function
Label - numerical DE identifier
Reference - specification paragraph number

Requirement errors detected using SVDs:
N1 = number due to inconsistencies
N2 = number due to incompleteness
N3 = number due to misinterpretation

Tmplementation: The implementation of an SVD is composed of
the following phases:

(i) The decomposition phase is initiated by mapping the
system requirement specifications into stimulus/response
elements (DEs). That is, all keywords, phrases, functional
and/or performance requirements and expected outputs are
documented on decomposition forms.

(2) The graph phase uses the DES from the decomposition
phase and logically connects them to form the SVD graph.

(3) The analysis phase examines the SVD from the graph phase
by using connectivity and reachability matrices. The various
requirement error types are determined by examining the SVD
and identifying errors as follows:

(a) Inconsistencies - Decomposition elements that do
not accurately reflect the system requirement specification.

(b) Incompleteness - Decomposition elements that do not
completely reflect the system requirement specification.

(c) Misinterpretation - Decomposition elements that do
not correctly reflect the system requirement specification.
These errors may occur during translation of the requirements
into decomposition elements, constructing the SVD graph, or
interpreting the connectivity and reachability matrices.

82

An analysis is also made of the percentages for the various
requirements error types for the respective categories:
inconsistencies, incompleteness, and misinterpretation.

Ni
Inconsistencies (% (NI + N2 + N3) x 100

N2
Incompleteness (%) = (NI + N2 N3) x 100

Misinterpretation (%) =(Ni + N3 x 100

Please use this scale to respond to the following statements:

(a) (b) (C) Wd (e)
Strongly Neither Agree Strongly
Agree Agree Nor Disagree Disagree Disagree

I. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the

costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

83

Specification Completeness

Definition: This measure is used to determine the
completeness of the software specification and to identify
problem areas within the software specification.

Primitives:
B1 = number of functions not satisfactorily defined
B2 = number of functions
B3 = number of data references not having an origin
B4 = number of data references
B5 = number of defined functions not used
B6 = number of defined functions
B7 = number of referenced functions not defined
B8 = number of referenced functions
B9 = number of decision points not using all conditions,

options
B10 = number of decision points
Bl = number of condition options without processing
B12 = number of condition options
B13 = number of calling routines with parameters not

agreeing with defined parameters
B14 = number of calling routines
BI5 = number of condition options not set
B16 = number of set condition options having no

processing
B17 = number of set condition options
B18 = number of data references having no destination

Implementation: The completeness measure (CM) is the
weighted sum of ten derivatives expressed as:

10
CM = jwi Di

i=1

where for each i=l,_,10, each weight wi has a value between 0
and i, the sum of the weights is equal to 1, and each Di is a
derivative with a value between 0 and I.

To calculate the completeness measure: (i) The definitions
of the primitives for the particular application must be
determined, and (2) the priority associated with the
derivatives must be determined. This prioritization affects
the weights used to calculate the completeness measure.

Each derivative is determined as follows:

D1 = (B2 -B1 = functions satisfactorily defined
B2

84

D2 (B4 - 3)- = data references having an origin
B4(B6 - BS)

D3 - = defined functions usedB6
(B8 - B7)

D4 - B8 = referenced functions defined

D5 - = all condition options at decision
Bl0

points

D6 (B12 - B11) = all condition options with processingBl2

at decision points used

D7 =(B14 - B3) = calling routine parameters that agreeB14

with the called routines defined parameters

D8 (B 2 - B1) = all condition options that are setB12
D9=(B17 - BIg)_

D9 (B17 - processing follows set condition

options

DI0 = (B4 - BIB) - data references that have aB4
destination

Please use this scale to respond to the following statements:

(a) (b) (C) Wd (a)
Strongly Neither Agree Strongly
Agree Agree Nor Disaaree Disagree Disagree

I. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the

costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

85

Cause and Effect Gr;phing

Dfinitj.Q: Cause and effect grapning aids in identifying
incomplete and ambiguous requirements. This measure explores
the inputs and e.,pected outputs of a program and identifies
the ambiauities. Once these ambiguities are eliminated, the
specifications are considered complete and consistent.
(NOTE: A cause and effect graph is a formal transformation
of a natural laaguage specification (for example, English)
into its input conditions and expected outputs. The graph
depicts a combinatorial logic network.)

vrimirtivg:
List of causes: distinct input conditions
List of effects: distinct output conditions or system

transformation (effects are caused by the changes
in the state of the system)

Aexisting = ..umber of ambiguities in a program remaining
to be eliminated

Atot = total number of ambiguities identified

Implementation: Identify all requirements and divide them
into separate entities. Analyze the requirements to identify
all the causes and effects in the specification. After the
analysis is completed, assign each cause and effect a unique
identifier. (For example, El for effect one.)

Next, create the cause and effect graph:

(1) Represent each cause and each effect by a node
identified by its unique number.

(2) Interconnect the cause and effect nodes by analyzing the
semantic content of the specfication and transforming it
into a Boolean graph. Each cause and effect can be in one of
two states: true or false. Using Boolean logic, set the
possible states of the causes and determine under what
conditions each effect will be present.

(3) Annotate the graph with constraints describing
combinations of causes and effects that are impossible
because of semantic or environmental constraints.

(4) Identify as an ambiguity any cause that does not result
in a corresponding effect, any effect that does not originate
with a cause as a source, and any combination of causes and
effects that are inconsistent with the requirement
specification or impossible to achieve.

86

The measure of ambiguities present is computed as follows:

CE(%) = 100 x (1 - AexistinAtot

When all of the causes and effects are represented in the
graph and no ambiguities exist, the measure is 100%. A
measure of less than 100% indicates some ambiguities still
exist.

Please use this scale to respond to the following statements:

I (a) (b) (C) (W (a)
Strongly Neither Agree Strongly

Agrree Nor Disagree Disagree

i. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the

costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

87

"Bang" - A Functionality Measure

DiLfinitinn: This metric is a measure of the function of the
software to be delivered as perceived by the user. It is a
measure of the software functionality as stated in
requirements specification. This measure is based on a
formal specification model consisting of data flow diagrams,
object (entity-relationship) diagrams, and state-transition
diagrams.

Primitie.: This measure's principal primitives are:

Partitioning is used to to produce the
vehicle partition primitive

1 Function network system re uirement functional primitives
2 Data dictionary system data data elements
3 Object diagram retained data objects
4 Object diagram retained data relationships
5 State diagram control characteristic states
6 State diagram control characteristic transitions

Twelve essential counts of these primitives provide the basic
metrics from which the measure of "Bang" is formulated:

FP = the count of functional primitives lying inside the
man-machine boundary

FPM = the count of modified manual functional primitives
(functions lying outside the man-machine boundary
that must be changed to accommodate installation of
the new automated system)

DE = the count of all data elements existing at and
inside the man-machine boundary

DEI = the count of input data elements - those moving
from manual primitives to automated primitives

DEO = the count of output data elements - those moving
from automated to manual primitives

DER = the count of data elements retained (stored) in
automated form

OB = the count of objects in the retained data model
(automated portion only)

RE = the count of relationships in the retained data
model (automated portion only)

88

ST = the count of states in the state transition model

TR = the count of transitions in the state transition
model

TCi = the count of data tokens around the boundary of
the ith functional primitive (evaluated for each
primitive); a token is a data item that need not be
subdivided within the primitive

REi = the count of relationships involving the ith
object of the retained data model (evaluated for
each object)

Ipmlempntation: Measures of "Bang" are computed as follows:

Bang = FP x (weighting-factor-for-FP) +

DE x (weighting-factor-for-DE) + _

A simpler and more productive way to characterize "Bang" is
to choose one of the counts as a principal indicator and use
the others to modify it. For most systems, FP is the
principal indicator.

Please use this scale to respond to the following statements:

(a) (b) (C) (d) (e)
Strongly Neither Agree Strongly
Agree Agree Nor Disagree Disagree Disagree

I. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Commnents: Specifically, does a function type measure such as
this make for a good requirements analysis metric?

89

Composite Specification Measures

De-initinn: Requirements are represented with a composite
specification model (comprised of three views and
corresponding notations; see table below), from which
numerical counts are taken of various components of the
representation.

Composite Specification Model (CSM)

Functional Data Flow
Contextual Entity-Relationship
Dynamic State-Transition

The measures taken from the CSM are intended to capture the
context of the system (hence the composite nature of the
representation) in order to better understand it.

Primitives: This measure's primitives are organized
according to the three views of the CSM.

Primitives associated with the funct.onal view include:
functions, interfaces, internal arcs, internal data items,
system input/output data items, and file input/output data
items.

Primitives associated with the contextual view include:
entities, events, relationships, attributes, and value sets.

Primitives associated with the dynamic view include: states
and transitions.

Tmplementation: Measures are also organized according to the
three views of the CSM:

Measures associated with the functional view include:

Weighted function count

Numerical count of functional primitives

Numerical count of interfaces

Numerical count of internal arcs

Numerical count of internal data items

Numerical count of system input/output data items

90

Numerical count of file input/output data items

The measures associated with the contextual view include:

Numerical count of entities

Numerical count of events

Numerical count of relationships

Numerical count of attributes

Numerical count of value sets]

The measures associated with the dynamic view include:

Numerical count of states

Numerical count of transitions

Please use this scale to respond to the following statements:

(a) (b) (C) I (*)
Strongly Neither Agree D Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments: Specifically, are these types of measures good
requirements analysis metrics?

91

Control Flow Measures

gfiit Jin: The following measurements were originally
created for requirements written in the control flow
requirement specification language RSL (based on the control
flow and entity-relationship models). The control flow model
is implemented through "The Requirement Network (R NET)"; a
control flow graph consisting of nodes (specifying processing
operations) and connecting arcs. The measures are intended
to measure the complexity of the specified system in order to
better understand and manage the system development. The
measures are also intended to measure other functional and
non-functional attributes of the requirements specification,
as identified below, in order to enhance the quality of the
requirements specification.

Primitifvp: Each measure has its own primitive, which are
identified in the definition of each measure.

Implementation: The measures are simple counts of the
following items, except where specified otherwise.

To infer system complexity:

Number of requirement networks (RNETs)

Number of processing activities (ALPHAs)

Number of requirement networks (RNETs) that are enabled
directly or indirectly through a sequence of other
RNETs

Number of global variables

Number of requirement networks (RNETs) and processing
activities (ALPHAs) that read or write global variables

Number of requirement networks (RNETs) and processing
activities (ALPHAs) that must be changed if a certain
data structure is modified

To infer correctness of the requirements:

Number of functions (number of RNETs and ALPHAs in RSL)

Number of states in STM

To infer understandability of the requirements:

Nesting level of OR-nodes (predicate nodes) in a piece
of software

92

Number of states in STM

Number of data items

Usage of global data versus local data

Degree of data abstraction

Degree of data dependency

Please use this scale to respond to the following statements:

(a) (b) (C) (d) (e)
Strongly Neither Agree Strongly
Agree Agree Nor Disagree Disagree Disagree

I. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments: Specifically, do control flow measures make for
good requirements analysis metrics?

93

Miscellaneous Explicit Counts

Definit.io: The following measures are simple explicit
counts of various requirements specification attributes. The
counts are provided to allow you, the survey participant, an
opportunity to comment on various simple measures of the
requirements specification product and process.

Primitiv: Each count has its own primitive. The
primitives and measures are self-evident.

Implementation: Simple counts of the following requirements
specification attributes are made in order to measure the
quality specified.

Requirements completeness:

Number of TBDs in the specification

Number of non-existent references

Number of missing specification items

Number of missing functions

Number of missing products.

Requirements consistency:

Number of conflicting requirements

Number of non-traceable requirements.

Requirements testability:

Number of testable requirements

Number of untestable requirements.

Number of unique requirements

Number of TBDs

Requirements specification process effectiveness:

Number of defects found during reviews

Number of problem reports generated

Number of change requests generated

94

Number of completed change orders

Number of open change requests

System size and functionality:

Number of pages in the requirements specification

Number of input/output requirements

Number of constraints

Please use this scale to respond to the following statements:

(a) (b) (c) (d) (e)
Strongly Neither Agree Strongly
Agree Agree Nor Age Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the

costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments: Specifically, do simple measures make good
metrics?

95

Completeness Checklist

Dpfinitoin: This checklist measures the completeness of the
requirements specification.

Prfmit..ie: As shown in the checklist below.

Implementation: The requirements specification is inspected
using the following checklist to determine the completeness
of the specification.

Completeness Checklist

* Item Score
. Unambiguous References

Are requirements itemized so various functions
and their inputs/outputs are clearly
delineated?

YES = i NO = 0
2 External Data References

2.1 Number of data references which are
defined.
2.2 Number of major data references.

SCORE = 2.1 1 2.2
3 Major Functions Used

3.1 Number of defined functions used.
3.2 Number of functions identified.

SCORE = 3.1 + 3.2
4 Major Functions Defined

4.1 Number of identified functions defined.
4.2 Number of functions identified.

SCORE = 4.1 + 4.2
5 Decision Points Defined

Is the flow of processing and all decision
points in that flow defined?

YES = 1 NO = 0

The scores are then compared to organizational or individual
project requirements or goals which are generally based on
historical data.

(Questions are on next page.)

96

Please use this scale to respond to the following statements:

(a) (b) (C) (d) (e)
Strongly Neither Agree Disagree Strongly
Agree Agree Nor Disagree Isare Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments: Specifically, do checklist type measures make good
metrics?

97

Requirements Analysis Worksheet

Dinitin: This worksheet contains measurements (in the
form of numerous questions) for various quality factors to be
applied to the requirements specification.

Primi.ivs: None.

Implementation: The requirements specification is inspected
using the following worksheet to determine the relative
quality of the specification. (NOTE: For brevity, only a
few of the many quality factor worksheet items are provided.)

Requirements Analysis Worksheet

Answer
Topic and Item Yes No

1.0 flru-tu
1.1 Is an organization of the system provided which

identifies all functions and interfaces in the
system?

1.2 Are there duplicate functions and/or interfaces?
13 Is there a definitive statement of the requirements

for the distribution of information within the
database?

1.4 Is an organization of the database provided which
identifies the types of system-level information and
the information flow within the system?

1.5 Is there a definitive statement of requirements for
code to be written according to a coding standard?

1.6 Is there a definitive statement of requirements for
processes, functions, and modules to have loose
coupling and high cohesion?

2.0 Completeness and Correctness_
2.1 Is there a matrix relating itemized requirements to

major functions which implement those requirements?
2.1 Are requirements itemized so that various functions,

their inputs and outputs, are clearly delineated?
2.3 Is the flow of processing and all decision points in

that flow described?
2.4 Are all functions identified clearly defined?
2.5 Are all data references identified clearly defined?
2.8 Are all defined functions used?
2.9 Are all defined data references used?

The answers are then compared to organizational or individual
project requirements or goals which are generally based on
historical data.

98

Please use this scale to respond to the following statements:

(a) (b) (C) Wd (e)
Strongly Neither Agree Strongly
Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the

costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments: Specifically, are worksheets better measures of
requirements specification quality than more typical metrics?

99

App~endix B

Interview -D Saus-zion To]2ics

I. Metrics participant perceived as having utility include:

2. Metrics participant perceived as not having utility

include: ___________________________

3. Perceptions the participant has of a useful requirement

metric include: _______________ _______

4. Rationale the participant used to justify rating metrics

as not having utility: _________________

5. Additional comments: _____ ___________

100

Appendix C

Questionnaire Resoonse Data

Mean Scores and Overall Scores

M -an SCore on Statement _Humber Overall
mtric 2itle s.I UI s- St. _5 = Suo

Schedulf# Progress 3.7 3.0 3.2 2.5 3.3 2.8 21.3

Rqmts Dix Progress 3.5 2.8 3.2 3.0 3.2 3.3 22.3
Fault Days Number 3.0 2.3 3.0 3.2 3.0 2.8 20.2

Error Dist Measure 3.2 2.8 3.7 3.8 3.5 3.2 23.3
Manhours per Defect 3.2 3.0 3.5 3.0 3.3 3.5 23.0
Rqmts Understand 4.0 3.2 2.2 2.3 2.7 1.8 18.0
Rqats Ambiguity 1.8 1.7 1.7 2.2 3.0 2.3 15.0
Rqmts Traceability 3.3 1.5 3.2 3.2 3.5 3.2 21.0
NO. Conflict IRqt 2.5 2.0 2.5.. 2.5 2.7 2.5 17.2

iqpts Copliance 2.5 i 2.7 2.7 3.2 3.3 3.3 21.0

Spec Completeness 2.7 2.7 2.8 3.2 3.2 1 3.2 20.8
Cause Effect Graph 2.7 1.8 2.5 3.3 3.2 3.3 20.2
Bang Measure 2.0 2.5 2.5 2.8 3.3 2.8 18.8
CSK Measures 1.5 2.2 2.7 3.2 i 3.5 2.7 18.3
Control Flow eas 2.5 2.5 3.2 3.2 3.5 3.5 21.8

Misc Counts 3.3 2.8 3.5 3.3 3.2 3.5 23.2
Checklist 3.0 3.2 3.3 3.0 2.8 3.5 22.3
Worksheet 3.5 3.0 2.8 2.7 3.2 3.7 22.5

NOTES:

Lowest possible mean score = I
Highest possible mean score = 5

Lowest possible overall score = 7
Highest possible overall score = 35

101

Maximum Overall Scores, Minimum Overall Scores,

and Overall Scores

Maxim= Minimun

Mtrim- 1itl-A overall Boor. Ovrall floorM QVo al X- -floors

Schedule Progress 27 15 21.3

Rctts Doe Progress 29 13 22.3

Fault Days Nmbor 28 7 20.2

grror Dist Measure 33 17 23.3

Manhours per Defeat 34 19 23.0

Rqmts 1nderstand 23 11 18.0
Rqwts Ambiguity 19 10 15.0

Rquto Tracea]bility 30 13 21.0

no. Conflict Rquat 27 7 17.2

Rqpats Complianoe 27 15 21.0

spec Cowletenoss 26 11 20.8

Cause Effect Graph 26 14 20.2

Bang Measure 26 11 18.8

COM Measures 26 11 18.3

Control Flow Mas 28 13 21.8

Misc Counts 29 16 23.2

Checklist 29 7 22.3

Worksheet 30 14 22.5

102

Overall Scores and Standard Deviation for

each Overall Score

Overall Score Overall Score Overall

Hqmtric Title -- + Stdfley - Adlpv- -2XI. BfilsMy

Schedule Progress 25.9 16.7 21.3 4.59

Rqtm Doe Progress 28.5 16.2 22.3 6.12

Fault Days Number 28.0 12.3 20.2 7.83

Error Dist Measure 30.6 16.0 23.3 7.28
Manhours per Defect 29.0 17.0 23.0 6.03

Rqats Understand 22.0 14.0 18.0 4.00

Rqmta Ambiguity 18.3 11.7 15.0 3.35

Rqats Traceability 27.4 14.6 21.0 6.42

No. Conflict Rqmt 24.7 9.6 17.2 7.55

Riqts Copliance 25.4 A4 16.6 21.0 4.38

Spec Completeness 26.7 14.9 20.8 5.91

Cause Effect Graph 25.1 15.2 20.2 4.96

Bang Measure 25.4 12.2 18.8 6.59

CaM Measures 23.6 13.1 18.3 5.28

Control Flow Maas 27.5 16.1 21.8 5.71

Misc Counts 28.2 18.1 23.2 5.08

Checklist 30.3 14.4 22.3 7.97

Worksheet 28.6 16.4 22.5 6.09

103

Maximum Scores, Minimum Scores, and Mean Scores

for Statement Number Six

Maximum Score Minimum Score Mean Score

?Etxia2Title -stemnttemanment S stemean"
Schedule Progress 4 2 2.8

Rqts Doc Progress 5 2 3.3

Fault Days Number 4 12.8

Error Diet Measure 5 1 3.2

Manhours per Defect 5 2 3.5
Rqats Understand 3 1 1.8
Rsto Ambiguity 4 1 2.3

Rqmts Traceability A 5 1 3.2

No. Conflict Rat 4 1 2.5

Rmts Coliance 4 2 3.3

Spec Cowleteness 4 2 3.2

Cause Effect Graph 4 2 3.3

Bang Measure 4 1 2.8

CSM Measures 4 1 2.7

Control Flow eas 4 3 3.5

MiSc Counts 5 3 3.5

Checklist 5 1 3.5

Worksheat 5 2 3.7

104

Mean Scores and Standard Deviation for

Statement Number Six

Mean Score Mean Score Mean
hitrio Titla + atn~ - 81e'J-x... AY.h

Schedule Progress 3.8 1.9 2.8 1.0

Rqmts Do* Progress 4.4 2.3 3.3 1.0

Fault Days Number 4.3 1.4 2.8 1.5

Error Diet Measure 4.8 1.6 3.2 1.6

Manbours per Defeat 4.5 2.5 3.5 1.0

Rqte Understand 2.6 1.1 1.8 0.8

Rqntz Ambiguity 3.5 1.1 2.3 1.2

Riuta Traceability 4.6 1.7 3.2 1.5

No. Conflict Rqmt 3.9 1.1 2.5 1.4

Riqts Coifliance 4.1 2.5 3.3 0.8

Spec Completenee 3.9 2. 4 3.2 0.8

cause Effect Graph 4.1 2.5 3.3 0.8

Bang Measure 4.0 1.7 2.8 1.2

CSH Measures 3.7 1.6 2.7 1.0

Control Flow Meae 4.0 3.0 3.5 0.5

Mie Counts 4.3 2.7 3.5 0.8

Checklist 4.9 2.1- 3.5 1.4

Worksheet 4.9 2.5 3.7 1.2

105

0, M

0w0

:

q4 4

0 4
0 tWD 4) C

:) 44 .,-(4

4jr -4~.

4)

~6 8

4 Z0 .,

__ __ _ 4)

C.4) C) 1-4-.

106j

-4

0 o~~~ 0c0

14 1

1.4

6o

AUtz 0
.V4 ()M 4)-

41 C)-4

Ali

0 Ui

0 IS

0-107

Bibli oaraDhy

Agresti, William W. "An Approach to Developing Specification
Measures," Proceedings. Ninth Annual Software
Engineering Workshon, NASA Goddard Space Flight Center,
(November 1984).

Basili, Victor R. and H. Dieter Rombach. "Tailoring the
Software Process to Project Goals and Environments,"
Proceedings of the Ninth International Conference on
Software Engineering. 345-357. IEEE Computer Society
Press, (30 March-2 April 1987).

Boehm, Barry. "Verifying and Validating Software
Requirements and Design Specifications," IEEE Software,
1:75-88 (January 1984).

Boeing Aerospace Company. Software Quality Measurement for
Distributed Systems, Volumes 1-3. Air Force Systems
Command Rome Air Development Center Technical Reports
RADC-TR-83-175-VOL-I, RADC-TR-83-175-VOL-2, RADC-TR-83-
175-VOL-3, July 1983 (AD-A137 955, AD-A137 956, AD-A137
957).

Bush, Marilyn W. Software Product Assurance Metrics Studv
JPL's Software Systems Quality and Productivity. JPL
Publication 89-6. Pasadena CA: NASA Jet Propulsion
Laboratory, 15 February 1989.

Cioch, Frank A. "Measuring Software Misinterpretation," Te
Journal of Systems and Software, l5:85-95 (February
1991).

Conte, S. D. and others. Software Engineering Metrics and
o . Menlo Park CA: Benjamin/Cummings Publishing

Company, Inc., 1986.

DeMarco, Tom. Controlling Software Projects. Englewood
Cliffs NJ: Yourdon Press, 1982.

Department of the Air Force. Acquisition Management:
Software Manaaement Indicators. AFSC Pamphlet 800-43.
Andrews AFB DC: HQ AFSC, 31 August 1990.

Dziegiel, Roger J., Jr. C2 Software Engineering Branch, Air
Force Systems Command Rome Laboratories, Griffiss AFB
NY. Electronic mail message. 2 April 1991.

108

Eisenberg, Anne. Effective Technical Communication. New
York: McGraw-Hill, Inc., 1982.

Emory, C. William. Business Research Methods (Revised
Edition). Homewood IL: Richard D. Irwin, Inc., 1980.

Farbey, B. "Software Quality Metrics: Considerations About
Requirements and Requirement Specifications,"
Information and Software Technology, 32:60-64
(January/February 1990).

Fouser, Thomas J. Software Reauirements Analysis Phase Trial
Standard. JPL D-4005 (Version 3.0). Pasadena CA: NASA
Jet Propulsion Laboratory, December 1988.

Gause, Donald C. and Gerald M. Weinberg. E
Reauirements. Ouality Before Design. New York: Dorset
House Publishing Company, Inc., 1989.

IEEE Guide to Software Requirements Specifications.
ANSI/IEEE Std 830-1984, 20 July 1984.

IEEE Guide for the Use of IEEE Standard Dictionary of
Measures to Produce Reliable Software. IEEE Std 982.2-
1988 (Corrected Edition), 12 June 1989.

IEEE Standard Dictionary of Measures to Produce Reliable
s. IEEE Std 982.1-1988, 9 June 1988.

Kitchenham, Barbara A. and others. "An Evaluation of Some
Design Metrics," Software Engineering Journal, a:50-58
(January 1990).

Losa, J. W., CDR, USNR, and others. Readability Grade Levels
of Selected Navy Technical School Curricula. USN
Training Analysis and Evaluation Group, Orlando FL,
Technical Memorandum 83-2, February 1983 (AD-A125 862).

Mills, Everald E. Software Metrics (SEI Curriculum Module
SEI-CM-12-1.1). Carnegie Mellon University Software
Engineering Institute, December 1988.

National Research Council Air Force Studies Board. Adantina
Software Development Policies to Modern Technology.
Washington DC: National Academy Press, July 1989 (AD-
A213 391/6).

109

Ramamoorthy, C. V. and others. "Software Quality and
Requirement Specification," Proceedings IEEE Computer
Society 1986 International Conference on Computer
Lang . 75-83. IEEE Computer Society Press, New
York, 1986.

-- "Metrics Guided Methodology," Proceedings IEEE
Connuter Society's Ninth International Computer Software
and Applications Conference (COMPSAC86). 111-120. IEEE
Computer Society Press, New York, 1985.

Riney, Larry A. Technical Writing for Industry: An
Operations Manual for the Technical Writer. Englewood
Cliffs NJ: Prentice-Hall, Inc., 1989.

Ross, Niall. "Using Metrics in Quality Management," IEEE
Software, 7:80-85 (July 1990).

Schultz, Herman P. Software Management Metrics. The MITRE
Corporation, Bedford MA, May 1988 (AD-A196 916).

Shepperd, M. "Early Life-Cycle Metrics and Software Quality
Models," Infonrmation and SOftware Technology, 2:311-316
(May 1990).

Systems Architects, Inc. Comnuter Systems Acquisition
Metrics Handbook, Volumes 1-4. Air Force Systems
Command Electronic Systems Division Technical Reports
ESD-TR-82-143(1), ESD-TR-82-143(2), ESD-TR-82-143(3),
ESD-TR-82-143(4), May 1982 (AD-A120 375, AD-A120 376,
AD-A120 377, AD-A120 378).

110

Captain James H. Byers was born on August 13, 1963 in

Rockville Centre, New York. He graduated from General

Douglas MacArthur High School in Levittown, New York in 1981

and attended the State University of New York at Buffalo,

graduating with a Bachelor of Science Degree in Aerospace

Engineering in May 1985. Captain Byers attended the Air

Force Officer Training School in San Antonio, Texas during

the summer of 1985 and, upon graduation, was commissioned a

Second Lieutenant in the United States Air Force. He was

then assigned to the 6595th Shuttle Test Group (Air Force

Systems Command) at Vandenberg AFB, California, where he

served initially as a Space Shuttle Systems Engineer and

later as a Project Engineer. Following the Space Shuttle

Challenger accident and the subsequent deactivation of the

6595th Shuttle Test Group, he served as a Project Engineer

for the Western Space and Missile Center Titan IV/Centaur

Launch Complex Program. He entered the Air Force Institute

of Technology School of Systems and Logistics in May 1990.

Ill

Form Approved

REPORT DOCUMENTATION PAGE OM No 0704-0188

a,.Oh(.eoCrt r9e ' S C% rnt I ntontr n s. l, S er-. e , ,ur oer esoorse a.dndg te time tor nstr- '- r, 5 , r fnl t o .r ,t ' a .Q , uf s,3'hrj ~ da n) , at ~ neeael, 0 OD m el-nj rjC 1P;e~t1C.,)tto,-at~ n -,a(s,,eintr, ardlg ti,% o , 3rln - , t e P rsr lt ID , tT

D, fe<ti,jn t - tr'01,2 (4gt -lt s .e '0t1 1o . 15 1101n7 -tins ,a r :. s-ln~on -eaaoujrie, ',erces. l Oletr t ,, at nt r , r'o~o)p-., t r , r~s 4 4p .t' r

or rn ?,te'2,4 .,,rqtm o a 2?92 4~302 o Ir T T"e)-f -t %Ianeme"I ind 'idge! 13erwnorK lcdcooP2e. '4. 4)a,, 2l '

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I December 1991 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

RELATIVE UTILITY OF SELECTED SOFTWARE
REQUIREMENT METRICS

6. AUTHOR(S)

James H. Byers, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GSS/LSY/91D-4

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)
The objective of this study was to determine the relative utility of selected software

requirement metrics in assessing the productivity of the software requirements analysis process and
the quality of the products of this process. This objective was met by collecting information about the
perceptions that practicing software professionals have of the usefulness of various requirement
metrics. The study employed a two part methodology. The first part utilized Basili's
goal/question/metric paradigm to identify specific goals of the measurement effort and to identify
requirement metrics worthy of further investigation. The second part employed a typical research
design to gather perceptions that software professionals have of the utility of several metrics selected
from those identified earlier. The study produced inconclusive results and further research is
recommended. Results were based on a small sample and the data only reiterated the mixed opinions
that software professionals have of the usefulness of software metrics. One significant finding is the
consensus that a metric must be precisely defined for it to be accepted by the software community.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Computer Programs, Software, Software Engineering, 122
Requirements. Specifications. Measurement 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

SN 7540-01 280-5500 S-ar'dad 2Orr 298 Rpv 2 89

imam=~~~~~~~0 m, l m11m .1,4 mm mIlm mm m m m

AFIT Control Number AFiT/GSS/LSY/91D-4

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for cur-
rent and future applications of AFIT thesis research. Please return
completed questionnaires to: AFIT/LSC, Wright-Patterson AFB OH
45433-6583.

1. Did this research contribute to a current research project?

a. Yes b. No

2. Do you believe this research topic is significant enough that it would
have been researched (or contracted) by your organization or another
agency if AFIT had not researched it?

a. Yes b. No

3. The benefits of AFIT research can often be expressed by the equivalent
value that your agency received by virtue of AFIT performing the research.
Please estimate what this research would have cost in terms of manpower
and/or dollars if it had been accomplished under contract or if it had
been done in-house.

Man Years

4. Often it is not possible to attach equivalent dollar values to
research, although the results of the research may, in fact, be important.
Whether or not you were able to estabiish an equivalent value for this
research (3 above), what is your estimate of its significance?

a. Highly b. Significant c. Slightly d. Of No
Significant Significant Significance

5. Comments

Name and Grade Organization

Position or Title Address

